THEORIE DES NOMBRES Années 1996/97-1997/98
BESANCON

An explicit formula for the Hilbert symbol
in a multidimensional local field

T.B. BELIAEVA
S.V. VOSTOKOV



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL IN
A MULTIDIMENSIONAL LOCAL FIELD

T.B. BELIAEVA, S.V. VOSTOKOV

INTRODUCTION

The object of this paper to expand the results of the paper [1]. In it was con-
structed the explicit formula for the Hilbert symbol for a mutidimensional local
field of characteristic 0 with the residue field of characteristic p, where p is an odd
prime number. In this paper we consider the case of p = 2.

Let F be an n-dimensional local field, i.e. a sequence of fields ko, k1,....kp = F
such that:

a) kg is finite;

b) Vi = 1,...,n the field k; is a complete discrete valuated field with the residue
field k;-1.

Assume that F contains the group pq of ¢-th roots of 1, where ¢ = 2™, and let
¢ be a generator of ;. Then we can define the Hilbert symbol as follows

(s )e: ké”(F) X F*[F™ — pq,
(a1, .. an), B)g = /B Lot D=l
where k'é” (F)= KM(F)/KM(F)? and KM(F) is the n-th Milnor’s K-group,and
v: KM(F) — Gal(F®/F)

is a canonical reciprocity map on F'.
The aim of this article is to give an explicit formula for (, ),. We construct the

map

T': F*x - X F*— pq
T(on, ..., 0ngr) = ¢ %Y,
where tr is a trace operator on the inertia subfield of F', res denotes a standard
residue of a power series, W is a power series, defined by the expansion of ¢ in
power series on the local parameters of the field F', and & is defined by the similar
expansions of the elements a;.
We will prove the following theorems given in the case p # 2 in the paper [1]:
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Theorem 1. The map T has the following properties:

a) multiplicativity at all the arguments;

b) anticommutativity, i.e. (..., e, &ig1,...) =T(..., aig1,04,...) 7Y

c) proportionality, i.e. (..., aiy1,...) =1 when o; + @41 =0;

d) symbol property, i.e. T(...,a;,ai41,...) =1 when a; + @iy = L.
Theorem 2. The map I' is well defined, i.e. it is invariant with respect to any
change of variables and independent on the method of expansion of o; and ¢ in
pOWer series.

Theorem 3. The pairing
() ) i kg(F) x F*[F* — pg,

where kq(F) = KM (F)/KM(F)9,
given by the formula

{a1,..,anl, y)p =T(o1,...,an,9),
coincides with the Hilbert symbol (, )q.

§1 DESCRIPTION OF THE MAP ['.

The field F contains (as an isomorphic subfield) a quotient field of the Witt ring
W (ko), which is the inertia subfield of F. Let us denote this subfield by 7', and its
ring of integers by o. Let ?y,...,%,—1 be local uniformizing elements of the field F.
We consider the ring A = o{{t;}} ... {{tn-1}} and define on the ring A{t,}} the
Frobenius operator A, wich acts on #; as squaring and leaves coefficients invariant.

Let m be a prime element of F. Then we can expand ¢ in a series on the
exponents of m with coefficients in the ring A and replasing 7 by ¢, obtain series
2(tn) of A((ts)) such that z(m) = {. In the same way we can obtain the series a;(tn)
for each of the a;.

We denote by W the formal power series, given by the same formula as the power
series x/s from the papers [2.1] and [2.2]. This power series depends only on z(t,)
and has the following property:

%—IgEO mod ¢, 1<i<n

Define l{a) for any a € A{{t,}} as follows:

l(e) = %log a? A,

The function () is well defined because of the obvious congruence:

o® =a? mod 2,

and it is easy to prove that l{a) € A{{t,}} for any o € A{{t,}}.
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Denote the logarithmic derivative a‘lg% Va € A{t,}} by di(a), the difference

ol 0
(@)~ T by i(a) . £ 18(0) by ofa) and g-fe(@)o(9) by wi(a,). We
1 7
define ® by the following formula:
n+1 n+l
o= z: )" (e D+ Y, Pij,
i=2,7=1
i>]
where
§i(e1) ... dn(on) Jl(f)l) 9n (o)
51(ij_1) (5,,(6!]'_1)
Di = ilgzl‘l?) f]ngzz_lg )P!'.j = yl(aj,a,-) vn(aj,ai) .
HE ' 'H mlajr) o Ma(ajn)
n(en) T (an) n(an) oo mn(an)
Set .
n+1 n+1
o) = Z( 1)"~**+(e) Dy, o) = Z P, (@) is the same as
i=1 Z-z,j—l
i>3

@ in the paper [1]), then we obtain a more simple representation for ®:
®=aoM) + 03,

§2 SOME USEFUL DEFINITIONS AND FACTS

Let A; be the ring of{t:}} ... {ti-1 }{{ti+1}} . .- {t=}}. We consider the Artin-

Hasse function on A;:

> Ct
= Z:T a € A;.

Let ¢ be an extension of the Frobenius operator from W{kg) to A;. Then we can
define the generalized Artin-Hasse function on A;:

For the extension of the Frobenius operator A : t; ~—— t? given above we
denote the function F,(a) by E, i.e.



Obviously, for o = ti‘ -.-tin we have

Besides, it is easy to prove that the functions ! and E are mutually inverse.
If a series ¢ is the sum of partial derivatives of some series from the ring A{{t, }}

we shall say that
=0 mod 3J.

Lemma 1. If ¥ € A{{t,}} satisfies the congruence ¥ = 0 mod 9, then
¥ .- W =0 mod gq.

Corollary. If ®(a;,...,ant1) =0 mod 4, then I'(ay,...,0n41) = 1.
Lemma 2. Let the series ¢;,...,9n-1 and ¥ be such that ¢ € A{{t.}} and

%tﬁ € A{tn} V1< i<n-1, 1< j < n, then the series
3

o oy

aatl gtn

g1 Opr | _

D = 6t1 6tn = O mod 6
Opn -1 Opn-1
5 oL

§3 GENERATORS OF THE MULTIPLICATIVE GROUP F*

We say that a unit ¢ of the field F is principal if its image in the residue field ko
is 1. The set of all the principal units forms a group.

If we fix a prime element 7 and local parameters t1,...,t,_1 of the field F,
then any a € F* can be represented as a formal power series on #y,...,tp_1, 7
with coefficients from the multiplicative element system 3R of the field ko. In such a
representation there always exists a term 81 ... .-£;"" 7= 6 € R, with the minimal
(in the lexicographical order) set of exponents (71, ...,4,). This will be denoted by

a congruence:

a=6t - .. .~ti"_‘1‘7r"" mod deg(iy,..., ).
In particular:
2=05t5 ...t 7 mod degle, ... en)
where e1,...,e, are the ramification indices in the extensions ky/ko,... kn/kn-1

respectivly.
Any element o of F* has the following representation:

a=1t .. .t 0, a; €Z, 0 €ER,

where ¢ is a principal unit.




Any principal unit of F* may be written in the form:
e=14att ... trinin a€A, in>0,i1,...,in-1€Z,

and if i, = 0, then the last non-zero i, is to be positive.

Suppose ¢ =1 — 6t} -... -t;"_‘l‘ m» mod deg(i1,...,in), § €R.

Consider the following cases:

a) (i1,...,in) < (€1,...,6n) in the lexicographical order, then
f=1-6%" .. -tii_"l"vr?i“ mod deg(2t1,...,2in);

b) (81,...,9n) > (€1,...,€n), then
=1~ thill"'e‘ Co ~t;":f+e""7ri"+e" mod deg(i +e€1,...,%n + €n);
¢) (i1,...,in) = {€1,..-,€n), then

e2=1— (620 + 6%t - ... 2o ip?n mod deg(2ey, - .-, 2en).

From these congruences, using the standard method of [4], we obtain the follow-
ing set of generators in the group of the principal units:

Eei = 1—cr', 0<i< 2en.

Here we denote by ¢ the product ot - ...-tf,"_‘{, where § € R and i1,...,n-1,1
satisfy:

a_) 11y yin-14 € Z;

b) among i1, ...,%n-1,¢ there exists an odd number;

c) the last non-zero i, before i is positive if i = 0 and less then 2e, if ¢ = 2en.
We must also add a g-prime element

Wi = E(&s(X))|X:,,, tr £€=1 mod gq.
Thus we get the following set of generators:
{ec,iws}, 0L 1< 2en.
By the definition of the function E for the elements pci = E(cn') we obtain the

following congruence ’ .
pei =1—cn' mod (emt)2.

So we may take for the set of generators the set
{pC,ivw*}) 0< i < 2en,

with the same conditions on the indices.



§4 THE PROPERTIES OF THE MAP I

In this part we deal with the proof of the multiplicativity, the anticommuta-
tivity, the proportionality and the symbol property of the map I', stated in the

introduction (Theorem 1).
Multiplicativity is clear because of the obvious (V¥ 1 < i < n) relatoins:

§i(aB) = di(@) + 6:(B),
ni(aB) = ni(a) + ni(B),
oi(af) = ai(a) + 0i(B).

To prove the anticommutativity, by the Lemma 2, it is enough to verify the con-
gruence:

<I>(...,a,~,,oz,~+1...)+<I>(...,an+1,a,~,...)E 0 mod 0.

For sinplicity the proof will be given for the first pair of elements, i.e. we will prove
the songruence:

®(a1,az2,. .., 0n41) + (e, a1,...,0041) = 0 mod 0

Note that after expansion of all the determinants in the definition of the series o),
except Djy1, with respect to the last row we obtain an equality (see [1]):

n

(*) @W(a, ., ant1) = Uant1) Doy + 3 (1) i(ansa)®ilas, -, an)

i=1

where ®; are the power series of n — 1 variables ¢1,...,ti—1,%i1,...,tn with the
coefficients in o{{t;}}, given by the very same formula as ®(*).

The proof is by induction.

For n = 1 we have:

dM(ay, az) + @M (az, 1) = %l(al)l(az) =0 modd

Assume that our congruence holds for n — 1.
Representing ¢(1>(a1, Qg,...,0nt1) and (P(l)(ag, 01, ...,n41) a8 in (¥)and tak-
ing into consideration the induction hypothesis for the series ®; we obtain:

51 (011) . .Jn(al)
b1(az) .. .6,

Q(l)(al’a% ves Q’n+1) + ‘1’(1)(02, Qay, .. ':an-i-l) = l(an+1)



Consider now ®?(ay, 9, ..., 0np1) + D (ag, a1, .., 0ng1)-

It is easy to see that for 4,j ¢ {1;2} the interchange of @, and a2 means only
an interchange of two adjacent lines in P; ;, and F;; becomes P 3 and vice versa.
So we obtain

@(2)(01, Qzy.. .y an-}—l) + Q(Z) (02, 23 PR an+1) -
n+1l
=2P,1+2) (Pi+Pi2=0 mod 9,
=3

since 2v(a1,a2) = 0 mod 9, VI<I<n.

Thus ®(c1, @2, .- -, ant1) + (az,01,...,@nt1) = 0 mod 9, qed.
The symbol property means an equality:

I(...,o,1—a,...)=1

Because of the multiplicativity, anticommutativity and Lemma 1 it is enough to
prove the congruence:

®(t1,.. .y tn-1,a,1—a)=0 mod 4.

Taking into consideration that {(t;) = 0 we obtain:

U@ 5ttty baltnr) | T iltact) . Galtact) |

nl(l—a)..'.nn(l—a) vila,1—a)...vp(a,1-a)

n

=77l Z(l(l — a)di(a) — l{a)ni(1 - a) + é%%-o(a)o*(l — a))

i.e. we come to the 1-dimensional case proved in [3].
Proportionality means the equality
r(...,a,-a,...) =1,
and it follows from the other three properties:
1 1 -
A== )=T(.al- =) 1=

I‘(...,a,—a,..,)‘IF(.,.,a,l—a,...)"l=[‘(...,a,—a,‘..)"l.



§5 INDEPENDENCE AND INVARIANCE OF THE MAP I

This part contains the proof of Theorem 2. We shall reduce the independence
and invariance to the 1-dimensional case.

Independence of the map I is equivalent to following: if an element o; of F*is
decomposed in the series on t,...,t,_; and the prime 7 in two different ways and
the series €(t,) is obtained as a quotient of these two series (after replacement of
by t,), then the congruence

trres ®(ay,...,&...,n41) - W =0 mod ¢

holds at any o1,..., @1, ®it1, ..., ant1 € A{{tn ]}
It suffices to show that

trres ®(t1,...,...,th-1,m€,)- W =0 mod gq.

Take into into account that {(¢;) = I(7) = 0 and 6(¢;) = é(m) = 0. Replacing =
by t, we obtain:

Bti, o oyerortn,g,) =ttt (e).
Thus we have to prove the congruence:
trres t70 ... 71t H(E) - W) =0 mod g,
and this is a 1-dimensional case.

Let now z1,...,&, and ty,...,t, be two different sets of uniformizing elements.
Then the invariance of the map I' means, that if there is a change of variables:

Ty P—-)tl,

Tn iy,

then I'g(ay,...,ant41) = Tea1, ..., ant1)
Because of the independence it is enough to verify the invariance for changes of
the following type:

Ty =1,
Ti-1 = ti-,
T =g(t1,...,in),
Tig1 = g,
Ty =1n




Because of the multiplicativity and anticommutativity of T' it suffices to show
that

To(1, ..., 2, E(@ - @rmizh) = Tu(ty, oty 0, W - 1771 95))
To prove this equality it is sufficient to verify the congruence:
D21, ..., Tn, E(L - a T ah)) = Beltn, . b1, g, E(E %)) mod .

Denoting «i' - ...- 'J;;"_“f =t ti,":f by ¢ and taking into consideration that

I(z) = 0 for any uniformizing , we obtain:

D (21, .. 2n,E(cal)) = (E(exEN | . =ce7t - aplh?

By(tr,. . b1, g, EAY 42T g¥) =UECG)) | -

=t tn 2 (U(E(ed®))di(g) — 1g)mi(E(cg®)) + vi(g, E(cg™))).

=1
So, it is enough to prove that
ceh =1 = 1(E(cq¥))dilg) — Ug)mi(E(ca™)) +vig, E(cg"))  mod &
and once again we come to the 1-dimensional case (see [2.2]).

§6 COINCIDENCE OF THE PAIRING < , >r WITH THE HILBERT SYMBOL.

To prove the coincidence of the pairing < , >r with the Hilbert symbol { , )q
it is enough to verify the coincidence of their values on the pairs (zr,€), where
2z = {t1,...,tn—1,7}, and € is a principal unit of the field F (see [1] for more
details). It is clear that it suffices to take for ¢ only the generators of the group of
principal units (see §3), i.e. it is enough to consider the two following cases:

a)e = W,

b)é‘ =€

By the definition of the Hilbert symbol we obtain an equality:

(xmwt)q =(.
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As defined above e,; = 1 —en' =1 — g ~ti"__"7r" where @ € iR and at least one
s 1 n—1

of 41,...,4n_1,% is an odd number. Assume that ¢ is odd. Then we have:

(;L‘n,&;’.j)i = ({tl, .. ~;tn-ly Cﬂ'i},Ec,,i)q({tl, .. .,tﬂ_l,c},Ec’i)_I‘
q 4

The first of these factors is trivial by the symbol property, and the second one is
trivial by the multiplicativity and proportionality. Thus (zr,€c,i)q = 1.

The case when the odd number is one of 4y, ...,%,-1 is similar.

By the definition of the pairing <,>r and w. we obtain:

< Zp,ws >r=C(.

The pairing <,>p has the very same properties as the Hilbert symbol, so we can
prove, as shown above for the Hilbert symbol, the following equality:

< Zr,Eci >r= 1.

Thus the pairing <,>r and the Hilbert symbol coincide at the generators, and,
consequently, everywhere.
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CORRECTION TO THE PAPER

$1.
The correct formulas for D; and P, ; are:
(51(0,‘1) PN Jn(al)
(51(&1) Jn(al) 61(aj_1) (5,,,((1_7'_.1)
viej, o) ... vnlaj,a;)
) (51 (a,-_l) N Jn (C!,'_.l) L 51 (aj.“) e Jn(aj_H)
P maig) oo mn(aigr) |0
(51((1,‘__1) e Jn(a;_l)
Mmont1) oo Na(ani) meig) .. me(aitr)
Mmlantr) .. Na(omsi)

$4.
In the poof of the symbol property the words ”Because of the multiplicativity,

anticommutativity and Lemma 1 it is enough to prove the congruence:” should be
replaced by ”We shall prove this for the case, when all the elements except o and
1 — a are uniformizing elements. So it is enough to verify the congruence:”
Because of this remark the proof in this article is complete only for the case,
when our map is defined on the elements {t — 1,...,t,,a,¢}, where a € A{t,}}
and € is a unit. Knowing the values of the Hilbert symbol on these elements, one
can calculate its value on any other element. The more complete proof will be given

in the next article.
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