
ASYMPTOTIC METHODS IN NUMBER THEORY ANDALGEBRAIC GEOMETRYbyPhilippe Lebaque & Alexey Zykin
Abstrat. � The paper is a survey of reent developments in the asymptoti theory of global�elds and varieties over them. First, we give a detailed motivated introdution to the asymptotitheory of global �elds whih is already well shaped as a subjet. Seond, we treat in a moreskethy way the higher dimensional theory where muh less is known and many new researhdiretions are available.Résumé. � Cet artile est un survol des développements réents dans la théorie asymptotiquedes orps globaux et des variétés algébriques dé�nies sur les orps globaux. Dans un premiertemps, nous donnons une introdution détaillée et motivée à la théorie asymptotique des orpsglobaux, théorie déjà bien établie. Puis nous aborderons plus rapidement la théorie asymptotiqueen dimension supérieure où peu de hoses sont onnues et où bien des diretions de reherhesont ouvertes.1. Introdution: the origin of the asymptoti theory of global �eldsThe goal of this artile is to give a survey of asymptoti methods in number theory andalgebrai geometry developed in the last deades. The problems that are treated by theasymptoti theory of global �elds (that is number �elds or funtion �elds) and varieties overthem are quite diverse in nature. However, they are onneted by the use of zeta funtions,whih play the key role in the asymptoti theory.We begin by a very well known problem whih lies at the origin of the asymptoti theoryof global �elds. Let Fr be the �nite �eld with r elements. For a smooth projetive urve Cover Fr we let Nr(C) be the number of Fr-point on C. We denote by g(C) be the genus of C.2000 Mathematis Subjet Classi�ation. � 11R42,11R29,11G40.Key words and phrases. � Towers of global �elds, L-funtions in family, Brauer�Siegel theorem.The �rst author was partially supported by EPSRC grant EP/E049109 �Two dimensional adeli analysis". Theseond author was partially supported by Dmitry Zimin's �Dynasty" foundation, by AG Laboratory SU-HSE,RF government grant, ag. 11.G34.31.0023, by the grants RFBR 10-01-93110-CNRSa, RFBR 11-01-00393-a,by the grant of the Ministry of Eduation and Siene of Russia No. 2010-1.3.1-111-017-029. The individualresearh projet N 10-01-0054 �Asymptoti properties of zeta funtions" was arried out with the support ofthe program �Sienti� fund of HSE".



48 Asymptoti methods in number theory and algebrai geometryThe problem onsists of �nding the maximum Nr(g) of the numbers Nr(C) over all smoothprojetive urves of genus g over Fr :

Nr(g) = max
g(C)=g

Nr(C).The �rst upper bound was disovered by André Weil in 1940s as a diret onsequene of hisproof of the Riemann hypothesis for urves over �nite �elds. He showed that Nr(C) satis�esthe inequality
Nr(C) ≤ r + 1 + 2g

√
r.Weil bound though extremely useful in many appliations is far from being optimal. Adramati searh for the improvements of this bound and for the examples giving lower boundson Nr(g) has begun in 1980s with the disovery of Goppa that urves over �nite �elds withmany points an be used to onstrut good error-orreting odes. To show how importantthe developments in this area were it su�es to mention the names of some mathematiianswho turned their attention to these questions: J.-P. Serre, V. Drinfeld, Y. Ihara, H. Stark, R.Shoof, M. Tsfasman, S. Vl duµ, G. van der Geer, K. Lauter, H. Stihtenoth, A. Garia, et.As suggested in [Ser85℄ by J.-P. Serre the ases when g is small and that when g is largerequire ompletely di�erent treatment. That is the latter ase whih interests us in this artile.The �rst major result in this diretion was the following theorem of V. Drinfeld and S. Vl duµ[DV℄:Theorem 1.1 (Drinfeld�Vl duµ). � For any family of smooth projetive urves {Ci} over

Fr of growing genus we have
lim sup

i→∞

Nr(Ci)

g(Ci)
≤ √

r − 1.Moreover, in the ase, when r is a square this bound turns out to be optimal. The familiesof urves, attaining this bound are onstruted in many di�erent ways: modular urves,Drinfeld modular urves, expliit iterated onstrutions, et. We refer the reader to setion 4for more details. This result, signi�antly improved and then reinterpreted in terms of limitzeta funtions by M. Tsfasman and S. Vl duµ, lies at the very base of the asymptoti theoryof global �elds. We will disuss all this in detail in setion 2. It is also possible to extendthe Drinfeld�Vl duµ inequalities to the ase of higher dimensional varieties. This serves as akeystone in the onstrution of the higher dimensional asymptoti theory (see setion 5).We will now turn our attention to yet another soure of development of the asymptoti theory,this time in the ase of number �elds. Let K be an algebrai number �eld, that is a �niteextension of Q. We denote by nK = [K : Q] its degree, and by DK its disriminant. Animportant question (both on its own aount and due to its appliations in various domainsof number theory, arithmeti geometry and theory of sphere pakings) is to know the rate ofgrows of disriminants of number �elds. The �rst bound onDK was obtained by H. Minkowskyusing the geometry of numbers. This bound was improved more than half a entury later byH. Stark, J.-P. Serre and A. Odlyzko ([Sta74℄, [Ser75℄, [Odl76℄, [Odl90℄) who used analytimethods involving zeta funtions. The bounds they prove are as follows:Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 49Theorem 1.2 (Odlyzko). � For a family of number �elds {Ki} we have
log |DKi

| ≥ A · r1(Ki) + 2B · r2(Ki) + o(nKi
),where r1(Ki) and r2(Ki) are respetively the number of real and omplex plaes of Ki. Unon-ditionally, we an take A = log(4π) + γ + 1 ≈ 60.8, B = log(4π) + γ ≈ 22.3, and, assumingthe generalized Riemann Hypothesis (GRH), one an take, A = log(8π)+ γ+ π

2 ≈ 215.3, B =

log(8π) + γ ≈ 44.7, where γ = 0.577 is Euler's gamma onstant.The fat that GRH drastially improves the results is omnipresent in the asymptoti theoryof global �elds. Fortunately, GRH is known for zeta funtions of urves over �nite �elds (Weilbounds) and, more generally, of varieties over �nite �elds (Deligne's theorem), whih allowsto have both stronger results and simpler proofs in the ase of positive harateristi.M. Tsfasman and S. Vl duµ managed to generalize the above inequalities taking into aountthe ontribution of �nite plaes of the �elds. In fat, the restrition of the so-alled basiinequality proven by M. Tsfasman and S. Vl duµ to in�nite primes gives us the inequalitiesof Odlyzko�Serre. If we restrit the basi inequality to �nite plaes we obtain an analogue ofthe generalized Drinfeld�Vl duµ inequality in the ase of number �elds. The reader will �ndmore information on this in the next setion of the paper.The last, but not least, problem that led to the development of the asymptoti theory of global�elds and varieties over them was the Brauer�Siegel theorem. Let hK denote the lass numberof a number �eld K and let RK be its regulator. The lassial Brauer�Siegel theorem, provenby Siegel ([Sie℄) in the ase of quadrati �elds and by Brauer ([Bra℄) in general desribesthe behaviour of the produt hKRK in families of number �elds. The initial motivation for itwas a onjeture of Gauss on imaginary quadrati �elds, however it has got many importantappliations elsewhere. The theorem an be stated as follows:Theorem 1.3 (Brauer�Siegel). � For a family of number �elds {Ki} we have
lim
i→∞

log(hKi
RKi

)

log
√

|DKi
|

= 1provided the family satis�es two onditions:(i) lim
i→∞

nKi

gKi

= 0;(ii) either GRH holds, or all the �elds Ki are normal over Q.It is possible to remove the �rst and relax the seond onditions of the theorem. The �rst steptowards it was made by Y. Ihara in [Iha83℄ who onsidered families of unrami�ed number�elds. A omplete answer (at least modulo GRH) was given by M. Tsfasman and S. Vl duµin [TV02℄ who showed how to treat this problem in the framework of the asymptoti theoryof number �elds, in partiular using the onept of limit zeta funtions. The orrespondingquestion for urves over �nite �elds is also of great interest sine it desribes the asymptotibehaviour of the number of rational points on Jaobians of urves over �nite �elds. All thiswill be disussed in detail in the setion 3. Publiations mathématiques de Besançon - 2011



50 Asymptoti methods in number theory and algebrai geometryIn our introdution we mostly onsidered the one dimensional ase of number �elds or funtion�elds. Here the theory is best developed. However, there is quite a number of results andonjetures for higher dimensional varieties with partiularly nie arithmetial appliations.Some of the results in this atively developing area are disussed in setion 5.Let us �nally say that, despite of the fat that the theory of error orreting odes and thetheory of sphere pakings are just brie�y mentioned in our introdution their role in thereation of the asymptoti theory of global �elds is fundamental. Indeed many questionssome of whih were mentioned here (maximal number of points on urves, growth of thedisriminants, et.) reeived partiular attention due to their relation to error-orretingodes or sphere pakings.2. Basi onepts and results. Tsfasman�Vl duµ invariants of in�nite global�eldsMany authors onsidered the behaviour of arithmeti data (deomposition of primes, genus,root disriminant, lass number, regulator et.) in families of global �elds. Tsfasman andVl duµ laid the foundation for the asymptoti theory of global �elds in order not to onsider�elds in a family, but the limit objet (say, a limit zeta-funtion) that would enode theinformation onerning the asymptotis of the initial arithmeti data.In this setion we introdue some de�nitions and give basi properties of families of global�elds.2.1. Tsfasman�Vl duµ invariants. � Arguments and proofs for the results from thissubsetion an be found in [TV02℄. Let us �rst de�ne the objets we are to work with. Let
r be a power of a prime p, and let Fr denote the algebrai losure of Fr.De�nition 2.1. � A family of global �elds is a sequene K = {Kn}n∈N suh that:1. Either all the Kn are �nite extensions of Q or all the Kn are �nite extensions of Fr(t)with Fr ∩Kn = Fr.2. if i 6= j, Ki is not isomorphi to Kj .A tower of global �elds is a family satisfying in addition Kn ⊂ Kn+1 for every n ∈ N. Anin�nite global (resp. number, resp. funtion) �eld is the limit of a tower of global (resp.number, resp. funtion) �elds, i.e. it is the union ∞

⋃

n=1
Kn.De�nition 2.2. � The genus gK of a funtion �eld is the genus of the orresponding smoothprojetive urve. We de�ne the genus of a number �eld K as gK = log

√

|DK |, where DK isthe disriminant of K.As there are (up to an isomorphism) only �nitely many global �elds with genus smaller thana �xed real number g, we have the following proposition.Proposition 2.3. � For any family {Ki} of global �elds the genus gKi
→ +∞.Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 51Thus, in the number �elds ase, any in�nite algebrai extension of Q is an in�nite number�eld, whereas in the funtion �elds ase, we require the in�nite algebrai extension of Fr(t)to ontain a sequene of funtion �elds with genus going to in�nity.Let us now de�ne the so-alled Tsfasman�Vl duµ invariants of a family of global �elds.Throughout the paper, we use the aronyms NF and FF for the number �eld and the funtion�eld ases respetively. As before, the GRH indiation means that we assume the generalizedRiemann Hypothesis for Dedekind zeta-funtions.First we introdue some notation to be used throughout the paper:
Q the �eld Q (NF), Fr(t) (FF);
nK [K : Q];

DK disriminant of K (NF);
gK the genus of K (FF ), the genus of K equal to log

√

|DK | (NF );
Plf (K) the set of �nite plaes of K;
Np the norm of a plae p ∈ Plf (K);
deg p logr Np (FF );
Φq(K) the number of plaes of K of norm q;
ΦR(K) the number of real plaes of K (NF);
ΦC(K) the number of omplex plaes of K (NF).We onsider the set of possible indies for the Φq,

A =

{

{

R,C, pk | p prime, k ∈ Z>0

}

(NF )
{

rk | k ∈ Z>0

}

(FF )
,and Af its subset of �nite parameters {

pk | p prime, k ∈ Z>0

}

.De�nition 2.4. � We say that a family K = {Ki} of global �elds is asymptotially exatif the following limit exists for any q ∈ A :

φq := lim
i→+∞

Φq(Ki)

gKi

.It is said to be asymptotially good if in addition one of the φq is nonzero, and asymptotiallybad otherwise. The numbers φq are alled the Tsfasman�Vl duµ invariants of the family K.This de�nition has two origins. The �rst one is the information theory sine the familiesgiving good algebrai geometri odes are those for whih φr exists and is big. The seondone is more tehnial and an be seen through Weil's expliit formulae. For onveniene wealso put φ∞ = lim
nKi

gKi

= φR + 2φC.Being asymptotially exat is not a restritive ondition. To be preise:Proposition 2.5. � 1. Any family of global �elds ontains an asymptotially exat sub-family.2. Any tower of global �elds is asymptotially exat and the φq's depend only on the limit.Publiations mathématiques de Besançon - 2011



52 Asymptoti methods in number theory and algebrai geometryWe an thus de�ne the Tsfasman�Vl duµ invariants of an in�nite global �elds K as the invari-ants of any tower having limit K. From now on, we only onsider asymptotially exat families,sine they provide natural framework for asymptoti onsiderations. One of the problems ofthe asymptoti theory is to understand the set of possible {φq}. In the next propositions wedesribe some the general properties of the {φq}. Let us start with the basi inequalities:Theorem 2.6 (Tsfasman�Vl duµ). � For any asymptotially exat family of global �elds,the following inequalities hold:
(NF −GRH)

∑

q

φq log q√
q − 1

+ (log
√

8π +
π

4
+
γ

2
)φR + (log 8π + γ)φC ≤ 1,

(NF )
∑

q

φq log q

q − 1
+ (log 2

√
π +

γ

2
)φR + (log 2π + γ)φC ≤ 1,

(FF )

∞
∑

m=1

mφrm

r
m
2 − 1

≤ 1,where γ is the Euler onstant.This result is entral in what follows. For instane, it is used to show the onvergene ofthe limit zeta-funtion assoiated to the family. It is proven using the Weil expliit formulae,the e�etive Chebotarev density theorem for number �elds and the Riemann hypothesis forfuntion �elds.In the ase of towers of number �elds (and of funtion �elds if we onsider suitable quantities),the degree of the extension gives an upper bound for the number of plaes above a primenumber p:Proposition 2.7. � For an asymptotially exat family of number �elds and any prime num-ber p the following inequality holds:
+∞
∑

m=1

mφpm ≤ φR + 2φC.Let us �nally de�ne the de�ieny δK of an asymptotially exat family K = {Ki} of global�elds as the di�erene between the two sides of the basi inequalities under GRH:
(NF ) δK = 1 −

∑

q

φq log q√
q − 1

− (log
√

8π +
π

4
+
γ

2
)φR − (log 8π + γ)φCand

(FF ) δK = 1 −
∞

∑

m=1

mφrm

r
m
2 − 1

.A remarkable fat is that the de�ieny of in�nite global �elds is inreasing with respet tothe inlusion (see [Leb10℄): K ⊂ L implies δK ≤ δL. One knows that �elds of zero de�ienyexist in the funtion �elds ase (.f. setion 4). Suh in�nite global �elds are alled optimal,and they are of partiular interest for the information theory.Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 532.2. Rami�ation, prime deomposition and invariants. � The preise statementsand proofs of the results from this subsetion an be found in [GSR℄ and [Leb10℄. TheTsfasman�Vl duµ invariants of in�nite global �elds ontain information on the rami�ationand the deomposition of plaes in these �elds. Indeed, one sees from Hurwitz genus formulathat any �nitely rami�ed and tamely rami�ed tower of number �elds is asymptotially good(beause it has bounded root disriminant). For funtion �elds, we have to ask in additionfor the existene of a split plae. It is not exluded that there exists an asymptotially goodin�nite global �eld with in�nitely many rami�ed plaes and no split plae, but no exampleshave been found so far. In the ase of funtion �elds, A. Garia and H. Stihtenoth provideda widely rami�ed optimal tower and an everywhere rami�ed tower of funtion �elds withbounded g/n is onstruted in [DPZ℄. Unfortunately, we do not know anything similar fornumber �elds.In general, we expet asymptotially good towers to have very little rami�ation and somesplit plaes. The next question, �rst raised by Y. Ihara, is how many plaes split ompletelyin a tower K of global �eld. It follows from the Chebotarev density theorem that the set ofompletely split plaes has in general a zero analyti density, that is
lim

s→1+

∑

p∈D Np−s

∑

p∈Plf (Q) Np−s
= 0,where D is the set of plaes of Q that split ompletely in K/Q. In the ase of asymptotiallygood �elds, ∑

p∈D

Np−1 is even bounded. However, in the ase of asymptotially bad �elds, thenumerator an have an in�nite limit whereas the rami�ation lous is very small (but in�nite).We refer the reader to [Leb10℄ for a more detailed treatment of the above questions.3. Generalized Brauer�Siegel theorem and limit zeta-funtions3.1. Generalizations of the Brauer�Siegel theorem. � Now we turn our attention tothe Brauer�Siegel theorem. The in-depth study of mathematial tools involved in it leads toan important notion of limit zeta funtions whih plays a key role in the study of asymptotiproblems.While looking at the statement of the Brauer�Siegel theorem (theorem 1.3) one immediatelyasks a question whether the two onditions present in it are indeed neessary. It is a rightguess that the seond ondition involving normality is tehnial in its nature (though gettingrid of it would be a breakthrough in the analyti number theory sine it is related to theso-alled Siegel zeroes of zeta-funtions � the real zeroes whih lie abnormally lose to s = 1;of ourse, presumably they do not exist). The seond ondition nK/ log
√

|DK | → 0 looksmuh trikier. Using the inequalities from proposition 2.7 it is immediate that this onditionis equivalent to the fat that the family we onsider is asymptotially bad.A fundamental theorem of M. Tsfasman and S. Vl duµ from [TV02℄ allows both to treat theasymptotially good ase of the Brauer�Siegel theorem and to relax the seond ondition.Publiations mathématiques de Besançon - 2011



54 Asymptoti methods in number theory and algebrai geometryWe formulate it together with a omplementary result by A. Zykin [Zyk05℄ whih relaxesthe seond ondition in the asymptotially bad ase. Before stating the result we give thefollowing de�nition:De�nition 3.1. � We say that a number �eld K is almost normal if there exists a tower
K = Kn ⊃ · · · ⊃ K1 ⊃ K0 = Q, where eah step Ki/Ki−1 is normal.Theorem 3.2 (Tsfasman�Vl duµ�Zykin). � Assume that for an asymptotially exatfamily of number �elds {Ki} either GRH holds or all the �elds Ki are almost normal. Thenwe have:

lim
i→∞

log(hKi
RKi

)

gKi

= 1 +
∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,the sum being taken over all prime powers q.For an asymptotially bad family of number �elds we have φR = 0 and φC = 0 as well as φq = 0for all prime powers q, so the onlusion of the theorem takes the form of that of the lassialBrauer�Siegel theorem. However, there are examples of families of number �elds where theright hand side of the equality in the theorem is either stritly less or stritly greater thanone (see [TV02℄). Let us mention one partiularly nie orollary of the generalized Brauer�Siegel theorem due to M. Tsfasman and S. Vl duµ: a bound on the regulators that improvesZimmert's bound (see [Zim℄, his bound an be written as lim inf

log RKi

gKi

≥ (log 2 + γ)φR +

2γφC).Theorem 3.3 (Tsfasman�Vl duµ). � For a family of almost normal number �elds {Ki}(or any number �elds under the assumption of GRH) we have
lim inf

logRKi

gKi

≥ (log
√
πe+ γ/2)φR + (log 2 + γ)φC.The proof of this bound is far from being trivial, it an be found in [TV02℄.The funtion �eld version of the Brauer�Siegel theorem is both easier to prove and requiresno supplementary onditions (like normality or GRH). In fat, it was obtained before theorresponding theorem for number �elds and allowed to guess what the result for number�elds should be (for a proof see [Tsf92℄ or [TV97℄).Theorem 3.4 (Tsfasman�Vl duµ). � For an asymptotially exat family of smooth pro-jetive urves {Xi} over a �nite �eld Fr we have:

lim
i→∞

log hi

gi
= log r +

∞
∑

f=1

φrf log
rf

rf − 1
,where hi = h(Xi) = |(JacXi)(Fr)| is the ardinality of the Jaobian of Xi over Fr.Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 55Let κK = Res
s=1

ζK(s) be the residue of the Dedekind zeta funtion ζK(s) =
∏

q
(1 − q−s)−Φq(K)of the �eld K at s = 1. Using the residue formula (see [Lan94, Chapter VIII℄ and [TVN,Chapter III℄)

κK =
2ΦR(K)(2π)ΦC(K)hKRK

wK

√

|DK |
(NF ase);

κK =
hKr

g

(r − 1) log r
(FF ase)(here wK is the number of roots of unity in K) one an see that the question about thebehaviour of the ratio from the Brauer�Siegel theorem is redued to the orresponding questionfor κK . To put it into a more general framework, we �rst seek an interpretation of thearithmeti quantities we would like to study in terms of speial values of ertain zeta funtions,then we study the behaviour of these speial values in families using analyti methods. Wewill see in setion 5 another appliations of this priniple. One also noties that this redutionstep explains the appearane of the GRH in the statement of the Brauer�Siegel theorem.Let us formulate yet another version of the generalized Brauer�Siegel theorem proven byLebaque in [Leb07, Theorem 7℄. It has the advantage of being expliit with respet to theerror terms, thus giving information about the Brauer�Siegel ratio on the ��nite level�.Theorem 3.5 (Lebaque). � Let K be a global �eld. Then(i) in the funtion �eld ase

log(κK log r) =
N

∑

f=1

Φrf log
rf

rf − 1
− logN − γ +O

( gK

NrN/2

)

+O

(

1

N

)

;(ii) in the number �eld ase assuming GRH
log κK =

∑

q≤x

Φq log
q

q − 1
− log log x− γ +O

(

nK log x√
x

)

+O

(

gK√
x

)

,where γ = 0.577 . . . is the Euler onstant. The onstants in O are absolute and e�etivelyomputable (and, in fat, not very big).This theorem an also be regarded as a generalization of the Mertens theorem (see [Leb07℄).A slight improvement of the error term (as before, assuming GRH) was obtained in [LZ℄. Anunonditional number �eld version of this result is also available but is a little more di�ultto state ([Leb07, Theorem 6℄). We should also note that Lebaque's approah leads to auni�ed proof of the asymptotially bad and asymptotially good ases of theorem 3.2 with orwithout the assumption of GRH.3.2. Limit zeta-funtions. � For the moment the asymptoti theory of global �elds lookslike a olletion of similar but not diretly related results. The situation is lari�ed immenselyby means of the introdution of limit zeta funtions. Publiations mathématiques de Besançon - 2011



56 Asymptoti methods in number theory and algebrai geometryDe�nition 3.6. � The limit zeta funtion of an asymptotially exat family of global �elds
K = {Ki} is de�ned as

ζK(s) =
∏

q

(1 − q−s)−φq(K),the produt being taken over all prime powers in the number �eld ase and over prime powersof the form q = rf in the ase of urves over Fr.The basi inequalities from theorem 2.6 give the onvergene of the above in�nite produtfor Re s ≥ 1
2 with the assumption of GRH and for Re s ≥ 1 without it (in partiular, in thefuntion �eld ase the in�nite produt onverges for Re s ≥ 1

2). In fat, the basi inequalitiesthemselves an be restated in terms of the values of limit zeta funtions. To formulate themwe introdue the ompleted limit zeta funtion:
ζ̃K(s) = es2−φRπ−sφR/2(2π)−sφCΓ

(s

2

)φR

Γ(s)φCζK(s) (NF ase);
ζ̃K(s) = rsζK(s) (FF ase).Let ξ̃K(s) = ζ̃ ′K(s)/ζ̃K(s) be the logarithmi derivative of the ompleted limit zeta funtion.Then the basi inequalities from setion 2 take the following form:Theorem 3.7 (Basi inequalities). � For an asymptotially exat family of global �elds

K = {Ki} we have ξ̃K(1
2) ≥ 0 in the funtion �eld ase and assuming GRH in the number�eld ase and ξ̃K(1) ≥ 0 without the assumption of GRH.Let us give an interesting interpretation of the de�ieny in terms of the distribution of zeroesof zeta funtions on the ritial line. In fat, the results we are going to state are interestingon their own. To a global �eld K we assoiate the ounting measure ∆K = 1

gK

∑

ρ
δt(ρ), where

t(ρ) = Im ρ in the number �eld ase and t(ρ) = 1
log r Im ρ in the funtion ase; the sum istaken over all zeroes ρ of ζK(s) in the number �eld ase and over all zeroes ρ of ζK(s) with

t(ρ) ∈ (−π, π] in the funtion �eld ase (in the ase of funtion �elds ζK(s) is periodi withthe period equal to 2π/ log r), δt is the Dira (atomi) measure at t. Thus we get a measure on
R in the number �eld ase and on R/Z in the funtion �eld ase. The asymptoti behaviourof ∆K was �rst onsidered by Lang [Lan71℄ in the asymptotially bad ase. The followingresult is proven in [TV02, Theorem 5.2℄ and [TV97, Theorem 2.1℄.Theorem 3.8 (Tsfasman�Vl duµ). � For an asymptotially exat family of global �elds
K = {Ki}, assuming GRH, the limit lim

i→∞
∆Ki

exists in an appropriate spae of measures (tobe preise, in the spae of measures of slow growth on R in the NF ase,and in the spae ofmeasures on R/Z in the FF ase). Moreover, the limit is a measure with ontinuous density
MK(t) = Re ξ̃K

(

1
2 + it

)

.Of ourse, the expression for MK(t) an be written expliitly using the invariants φq. Letus note two important orollaries of the theorem. First, we get an interpretation for thePubliations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 57de�ieny δK = ξ̃K
(

1
2

)

= MK(0) as the asymptoti number of zeroes of ζKi
(s) aumulatingat s = 1

2 . Seond, the theorem shows that for any family of number �elds zeroes of theirzeta-funtions get arbitrarily lose to s = 1
2 (and, in a sense, we even know the rate at whihzeroes of ζKi

(s) approah to this point).3.3. Limit zeta-funtions and Brauer�Siegel type results. � Let us turn our at-tention to the Brauer�Siegel type results. The formulae from theorems 3.2 and 3.4 an berewritten as lim
i→∞

log κKi

gKi

= log ζK(1). Furthermore, using the absolute and uniform onver-gene of in�nite produts for zeta funtions for Re s > 1, Tsfasman and Vl duµ prove in[TV02, Proposition 4.2℄ that for Re s > 1 the equality lim
i→∞

log ζKi
(s)

gKi

= log ζK(s) holds. Infat, this equality remains valid for Re s < 1 (at least if we assume GRH in the number �eldase). The proof of the next theorem an be found in [Zy10℄ in the number �eld ase and in[Zyk11℄ in the funtion �eld ase (where the same problem is treated in a broader ontext).Theorem 3.9 (Zykin). � For an asymptotially exat family of global �elds K = {Ki} for
Re s > 1

2 we have
lim
i→∞

log((s− 1)ζKi
(s))

gKi

= log ζK(s) (NF ase assuming GRH);
lim
i→∞

log((rs − 1)ζKi
(s))

gKi

= log ζK(s) (FF ase).The onvergene is uniform on ompat subsets of the half-plane {s | Re s > 1
2}.The ase s = 1 of theorem 3.9 is equivalent to the Brauer�Siegel theorem and urrent teh-niques does not allow to treat it in full generality without the assumption of GRH. Thusgetting unonditional results similar to theorem 3.9 looks inaessible at the moment. Theanalogue of the above result for s = 1

2 is onsiderably weaker and one has only an upperbound:Theorem 3.10 (Zykin). � Let ρKi
be the �rst non-zero oe�ient in the Taylor series ex-pansion of ζKi

(s) at s = 1
2 , i. e. ζKi

(s) = ρKi

(

s− 1
2

)rKi +o
((

s− 1
2

)rKi
)

. Then in the funtion�eld ase or in the number �eld ase assuming that GRH is true, for any asymptotially exatfamily of global �elds K = {Ki} the following inequality holds:
lim sup

i→∞

log |ρKi
|

gKi

≤ log ζK

(

1

2

)

.The interest in the study of the asymptoti behaviour of zeta funtions at s = 1
2 is partlymotivated by the orresponding problem for L-funtions of ellipti urves over global �elds,where this value is related to deep arithmeti invariants of the ellipti urves via the Birh�Swinnerton-Dyer onjeture. We refer the reader to setion 5 for more details. The questionwhether the equality holds in theorem 3.10 is rather deliate. It is related to the so alledlow-lying zeroes of zeta funtions, that is the zeroes of ζK(s) having small imaginary partPubliations mathématiques de Besançon - 2011



58 Asymptoti methods in number theory and algebrai geometryompared to gK . It might well happen that the equality lim
i→∞

log |ρKi
|

gKi

= log ζK(1
2) does nothold for all asymptotially exat families K = {Ki} sine the behaviour of low-lying zeroesis known to be rather random. Nevertheless, it might hold for �most� families (whatever itmight mean).To illustrate how hard the problem may be, let us remark that Iwanie and Sarnak studieda similar question for the entral values of L-funtions of Dirihlet haraters [IS99℄ andmodular forms [IS00℄. They manage to prove that there exists a positive proportion ofDirihlet haraters (modular forms) for whih the logarithm of the entral value of theorresponding L-funtions divided by the logarithm of the analyti ondutor tends to zero.The tehniques of the evaluation of molli�ed moments used in these papers are rather involved.We also note that, to our knowledge, there has been no investigation of low-lying zeroes of

L-funtions of growing degree. It seems that the analogous problem in the funtion �eld asehas neither been very well studied.Let us indiate that the orresponding question for the logarithmi derivatives of zeta funtionshas a negative answer. Indeed, the funtional equation implies that lim
i→∞

ζ′
Ki

(1/2)

ζKi
(1/2) = 1 for anyfamily of funtion �elds Ki. However, the logarithmi derivative of the limit zeta funtion

ζK(s) at s = 1
2 equals one only for asymptotially optimal families (.f. theorem 3.7).As a orollary of theorem 3.9 one an obtain a result on the asymptoti behaviour of Euler�Kroneker onstants.De�nition 3.11. � The Euler�Kroneker onstant of a global �eld K is de�ned as γK =

c0(K)
c−1(K) , where ζK(s) = c−1(K)(s− 1)−1 + c0(K) +O(s− 1).In [Iha06℄ Y. Ihara made an extensive study of the Euler-Kroneker onstants of global �elds,in partiular, he obtained an asymptoti formula for their behaviour in families of urves over�nite �elds. A omplementary result in the number �eld setting was obtain in [Zy10℄ as aorollary of theorem 3.9. In fat the theorem 3.9 gives that in asymptotially exat familiesthe oe�ients of the Laurant series at s = 1 of the logarithmi derivatives ζ ′Ki

(s)/ζKi
(s) tendto the orresponding oe�ients of the Laurant series expansion of the logarithmi derivativeof the limit zeta funtion. For zeroes oe�ient this beomes:Corollary 3.12 (Ihara�Zykin). � Assuming GRH in the number �eld ase and unondi-tionally in the funtion �eld ase, for any asymptotially exat family of global �elds {Ki} wehave

lim
i→∞

γKi

gKi

= −
∑

q

φq
log q

q − 1
.For the sake of ompleteness let us mention an expliit analogue of theorem 3.9 obtained in[LZ℄:Theorem 3.13 (Lebaque�Zykin). � For any global �eld K, any integer N ≥ 10 and any

ǫ = ǫ0 + iǫ1 suh that ǫ0 = Re ǫ > 0 we havePubliations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 59(i) in the funtion �eld ase:
N

∑

f=1

fΦrf

r(
1

2
+ǫ)f − 1

+
1

log r
· ZK

(

1

2
+ ǫ

)

+
1

r−
1

2
+ǫ − 1

= O

(

gK

rǫ0N

(

1 +
1

ǫ0

))

+O
(

r
N
2

)

;(ii) and in the number �eld ase assuming GRH:
∑

q≤N

Φq log q

q
1

2
+ǫ − 1

+ ZK

(

1

2
+ ǫ

)

+
1

ǫ− 1
2

=

= O

( |ǫ|4 + |ǫ|
ǫ20

(gK + nK logN)
log2N

N ǫ0

)

+O
(√

N
)

.3.4. Some other topis related to limit zeta-funtions. � Let us �nally state somerelated results on the asymptoti properties of the oe�ients of zeta funtions. For themoment they are only available in the funtion �eld ase (see [TV97℄). Let K/Fr(t) bea funtion �eld and let ζK(s) =
∞
∑

m=1
Dmr

−ms be the Dirihlet series expansion of the zetafuntion of K. One knows that Dm is equal to the number of e�etive divisors of degree m onthe orresponding urve. We have the following results on the asymptoti behaviour of Dm :Theorem 3.14 (Tsfasman�Vl duµ). � For an asymptotially exat family of funtion�elds K = {Ki} and any real µ > 0 we have
lim
i→∞

logD[µg](Ki)

gKi

= min
s≥1

(µs log q + log ζK(s)).Moreover, the minimum an be evaluated expliitly via φq (.f. [TV97, Proposition 4.1℄).Theorem 3.15 (Tsfasman�Vl duµ). � For an asymptotially exat family of funtion�elds K = {Ki}, any ǫ > 0 and any m suh that Dm

g ≥ µ1 + ǫ we have
logDm(Ki)

hKi

=
qm−g+1

q − 1
(1 + o(1))for g → ∞, o(1) being uniform in m. Here µ1 is the largest of the two roots of the equation

µ

2
+ µ logr

µ

2
+ (2 − µ) logr

(

1 − µ

2

)

= −2 logr ζK(1).We should note that o(1) from theorem 3.15 is additive whereas most of the previous resultswere estimates of multipliative type (they ontained logarithms of the quantities in question).It would be interesting to know whether there exist analogues of the above results in thenumber �eld ase.Let us onlude by refering the reader to the Setion 6 of [TV02℄ for a list of open questions.Publiations mathématiques de Besançon - 2011



60 Asymptoti methods in number theory and algebrai geometry4. Examples4.1. Towers of modular urves. � Let us begin with the examples of asymptotiallyoptimal families of urves over �nite �elds oming from towers of modular urves. The �rstonstrutions were arried out by Ihara ([Iha81℄), Tsfasman�Vl duµ�Zink ([TVZ℄). Theresearh in this diretion was ontinued by N. Elkies and many others. Let us desribe severalonstrutions.4.1.1. Classial modular urves. � Let us start with the onstrution of towers of modularurves whih leads to asymptotially optimal in�nite funtion �elds. For further information,we refer the reader to [TV92, Chapter 4℄. It is well known that the modular group Γ(1) =

PSL2(Z) ats on the Poinaré upper half-plane h by (

a b

c d

)

· z =
az + b

cz + d
. We �x a positiveinteger N and we de�ne the prinipal ongruene subgroup of level N by

Γ(N) =

{

γ ∈ Γ(1) | γ ≡
(

1 0

0 1

)

mod N

}

.

Γ(N) ⊳ Γ(1) and Γ(1)/Γ(N) is isomorphi to PSL2(Z/NZ). In partiular,
[Γ(1) : Γ(N)] =







N3

2

∏

ℓ|N

(

1 − ℓ−2
) si N ≥ 3

6 si N = 2.We also put Γ0(N) =

{

γ ∈ Γ(1) | γ ≡
(∗ ∗

0 ∗

)

mod N

}

, so that Γ(N) ⊂ Γ0(N). We have
[Γ(1) : Γ0(N)] = N

∏

ℓ|N

(

1 − ℓ−1
)

.Let now Γ be a ongruene subgroup, that is, any subgroup of Γ(1) ontaining Γ(N). The mostimportant ase for us is Γ = Γ(N) or Γ0(N). The set YΓ = Γ\h is equipped with an analytistruture, but is not ompat. To ompatify it we add points at in�nity (named usps):
Γ(1) ats naturally on P1(Q) and we put XΓ = (Γ\h) ∪ (Γ\P1(Q)). This way it beomes aonneted Riemann surfae alled modular urve. We let X(N) = XΓ(N), X0(N) = XΓ0(N),

Y (N) = YΓ(N) and Y0(N) = XΓ0(N).If Γ′ ⊂ Γ ⊂ Γ(1), there is a natural projetion from XΓ′ → XΓ, whih allows us to omputethe genus of the modular urve using the overing (the funtion j is in fat the j-invariant ofthe ellipti urve C/(Z + zZ)):
XΓ

// XΓ(1)
∼

j
// P1(C)via the Hurwitz formula. For instane,

gX(N) = 1 +
(N − 6)[Γ(1) : Γ(N)]

12N
.Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 61It an be shown that Y (1) lassi�es isomorphism lasses of omplex ellipti urves and that
Y0(N) lassi�es pairs (E,CN ), E being a omplex ellipti urve and CN being a yli sub-group of E of order N.Now, to onstrut towers of urves de�ned over �nite �elds, we need to take redutions ofour modular urves modulo primes. If S is a sheme and E → S is an ellipti urve, the setof setions E(S) is an abelian group. Let EN (S) denote the points of order dividing N in
E(S). We all a level N struture an isomorphism αN : EN (S) → (Z/NZ)2. One an provethat there exists a smooth a�ne sheme Y (N) over SpecZ[1/N ] lassifying the isomorphismlasses of pairs (E,αN ) onsisting of an ellipti urve E/SpecZ[1/N ] together with a level Nstruture αN on E. One an prove that this urve is a model of Y (N) over SpecZ[ζN , 1/N ],where ζN is a primitive N th-root of 1. There is also a model of Y0(N) over SpecZ[1/N ] andthis �oarse� moduli spae lassi�es pairs onsisting of an ellipti urve together with a ylisubgroup of order N. Models for X(N) and X0(N) an also be obtained in suh a way thatthey beome ompatible with those for Y (N) and Y0(N). These urves have good redutionover any prime ideal not dividing N. Moreover, the urve X0(N) an be de�ned over Q andhas good redution at any prime number not dividing N. Let p be suh prime. We denoteby C0,N the urve over Fp2 obtained by redution of X0(N) mod p. The urve X(N) anbe de�ned over the quadrati sub�eld of Q(ζN ) and has good redution at all the primesnot dividing N. Let CN be the redution of X(N) at a prime, i. e. a urve over Fp2. Onean see that the genus of X0(N) and of X(N) is preserved under redution. The pointsof these urves orresponding to supersingular ellipti urves are Fp2-rational and there are
[Γ(1) : Γ(N)]

12
(p− 1) of them on CN . This leads to the following theorem:Theorem 4.1. � (Ihara, Tsfasman�Vl duµ�Zink) Let ℓ be a prime number not equal to p.The families {Cℓn} and {C0,ℓn} satisfy φp2 = p− 1 and therefore are asymptotially optimal.Note that the result for C0,ℓn an be dedued immediately from the orresponding result for

Cℓn .4.1.2. Shimura modular urves. � Similar results on Shimura urves allow us to onstrutdiretly asymptotially optimal families over Fr with r = q2 = p2m, p prime. To do so,following Ihara, we start with a p-adi �eld kp with N(p) = q = pm. Let Γ be a torsion-freedisrete subgroup of G = PSL2(R) × PSL2(kp) with ompat quotient and dense projetionto eah of the two omponents of G (suh Γ's exist). Ihara proved the following results thatrelate the onstrution of optimal urves to (anabelian) lass �eld theory, and therefore areof great interest for us:Theorem 4.2. � (Ihara [Iha08℄) To any subgroup Γ of G with the above properties one anassoiate a omplete smooth geometrially irreduible urve X over Fr of genus ≥ 2, togetherwith a set Σ onsisting of (q− 1)(g− 1) Fr-rational points of X suh that there is a anonialisomorphism (up to onjugay) from the pro�nite ompletion of Γ to Gal(KΣ/K) where KΣPubliations mathématiques de Besançon - 2011



62 Asymptoti methods in number theory and algebrai geometrydenotes the maximal unrami�ed Galois extension of the funtion �eld K of X in whih all theplaes orresponding to the points of Σ are ompletely split.An easy omputation leads to the following result:Corollary 4.3. � For any square prime power r, there is a tower of urves de�ned over Frwith φr =
√
r − 1.In fat, the ellipti modular urves X(N) that we onstruted in the previous setion orre-spond to Γ = PSL2(Z[1/p]) and its prinipal ongruene subgroups of level N.4.1.3. Drinfeld modular urves. � The appliability of Drinfeld modular urves to the prob-lem of onstrution of optimal urves has been known sine late 80's. The results we are goingto disuss next an be found in [TV92℄.Let L be a �eld of harateristi p and let L{τ} denote the ring of non-ommutative polyno-mials in τ, onsisting of expressions of the form n

∑

i=0

aiτ
i, ai ∈ L, with multipliation satisfying

τ · a = ap · τ for any a ∈ L. Let A = Fr[T ].A Drinfeld module is an Fr-homomorphism φ : A→ L{τ}, a 7→ φa satisfying a few tehnialonditions. Let γ be the map γ : A → L sending a ∈ A to the term of φa of degree zero.Notie that φ is determined by φT and γ by γ(T ). We onsider only Drinfeld modules of rank
2 that is we assume that φT is a polynomial in τ of degree 2 and we put φT = γ(T )+gτ+∆τ2

(∆ 6= 0). More generally, one an de�ne Drinfeld modules over any A-sheme S.Just as in the lassial ase, given a proper ideal I of A, one an de�ne a level I strutureon φ. There is an a�ne sheme M(I) of �nite type over A that parametrizes pairs (φ, λ),where φ is a Drinfeld module over S and λ is a level I struture. The sheme M(I) has aanonial ompati�ation: there exists a unique sheme M(I) ontaining M(I) as an opendense subsheme, whose �bres over SpecA[I−1] are smooth omplete urves. The group
GL2(A/I) ats naturally on M(I) by operating on the strutures of level I and this ationextends to M(I).From now on, let I be a prime ideal generated by a polynomial of degree m prime to q − 1.Now, onsider the smooth omplete (reduible) urve X(I) = M(I) ⊗A Fq over Fq. Notethat the A-algebra struture on Fq is obtained through the redution mod T. Consider thesubgroup

Γ0(I) =

{(

a b

c d

)

∈ GL2(A) | c ∈ I

}and let Γ0(I) be the image of this subgroup in GL2(A/I). Finally, we onsider the smoothomplete absolutely irreduible urve X0(I) = X(I)/Γ0(I). The image of M(I) −M(I) in
X0(I) onsists of two Fq-rational points. Moreover, the following result holds.Theorem 4.4. � The family {X0(I)}, where I is a prime ideal of A generated by a poly-nomial of degree prime to q − 1, is an asymptotially exat family of urves de�ned over Fq,satisfying φq2 = q − 1 and thus is optimal.Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 63Moreover, N. Elkies proved in [Elk℄ that the family of urves Ẋ0(T
n) whih parametrizesnormalized Drinfeld modules (γ(T ) = 1,∆ = −1) with a level T n struture is asymptotiallyoptimal. He also related it to the expliit towers of Garia and Stihtenoth disussed in thenext subsetion.4.2. Expliit towers. � In the last �fteen years, Garia, Stihtenoth and many othersmanaged to onstrut asymptotially good towers expliitely in a reursive way. Their in-terest omes from oding theory for suh towers provide asymptotially good odes via theonstrution of Goppa. Let us give an example of suh expliit towers.Theorem 4.5. � (Garia�Stihtenoth) Let r = q2 be a prime power. The tower {Fn} de�nedreursively starting from the rational funtion �eld F0 = Fr(x0) using the relations Fn+1 =

Fn(xn+1), where
xq

n+1 + xn+1 =
xq

n

xq−1
n + 1

,satis�es φr =
√
r − 1 and thus is optimal.If the ardinality of the ground �eld is not a square no towers with φr =

√
r − 1 are known.However, there exist optimal towers in the sense that they have zero de�ieny. Suh towersan be onstruted starting from an expliit tower over a bigger �eld using a desent argument(see Ballet�Rolland [BR℄ for the details) or using modular towers.Let us now say a word about Elkies modularity onjeture. Elkies' work shows that most ofthe reursive examples of Garia and Stihtenoth an be obtained by �nding equations forsuitable modular towers. This made him formulate the following onjeture:Conjeture 4.6 (Elkies). � Any asymptotially optimal tower is modular.Finally, let us note that there are other interesting onstrutions leading to expliit asymptot-ially good towers of funtion �elds. As an example we mention the paper [BB℄ by P. Beelenand I. Bouw who use Fuhsian di�erential equations to produe optimal towers over Fq2.4.3. Class�eld towers. � As it was said in setion 2, tamely rami�ed in�nite extensions ofglobal �elds with �nitely many rami�ed plaes and with ompletely split plaes give examplesof asymptotially good towers. Given a global �eld K, it is natural to onsider the maximalextension of K unrami�ed outside a �nite set of plaes S, in whih plaes from a set T areompletely split. But these extensions are very hard to understand. The maximal ℓ-extensionsare muh easier to handle. These extensions are the limits of the ℓ-S-T -lass �eld towers of

K.For a global �eld K, two sets of �nite plaes S and T (T 6= ∅(FF )) of K, and a prime number
ℓ, onsider the maximal abelian ℓ-extension HT

S,ℓ(K) of K, unrami�ed outside S and in whihthe plaes from T are split (in the ase of funtion �elds the assumption on T to be non-emptyis made in order to avoid in�nite onstant �eld extensions). Consider the tower reursivelyonstruted as follows: K0 = K, Ki+1 = HT
S,ℓ(Ki). All the extensions Ki/K are Galois,Publiations mathématiques de Besançon - 2011



64 Asymptoti methods in number theory and algebrai geometryand we denote by GT
S (K, ℓ) the Galois group Gal(

⋃

i
Ki,K). A su�ient ondition for thistower to be in�nite is given by the Golod�Shafarevih theorem: if G is a �nite ℓ-group then

dimFℓ
H2(G,Fℓ) >

1
4 dimFℓ

H1(G,Fℓ)
2. This allows to onstrut asymptotially good in�niteglobal �elds. The following result is at the base of many onstrutions of lass �eld towerswith presribed properties:Theorem 4.7. � [Tsfasman�Vl duµ [TV02℄ (NF), Serre [Ser85℄ , Niederreiter�Xing [NX℄(FF)℄ Let K/k be a yli extension of global �elds of degree ℓ. Let T (k) be a �nite set of nonarhimedean plaes of k and let T (K) be the set of plaes above T (k) in K. Suppose in thefuntion �eld ase that GCD{ℓ,deg p, p ∈ T (K)} = 1. Let Q be the rami�ation lous of K/k.Let

(FF ) C(T,K/k) =#T (k) + 2 + δℓ + 2
√

#T (K) + δℓ,

(NF ) C(T,K/k) =#T (K) − t0 + r1 + r2 + δℓ + 2 − ρ+

2
√

#T (K) + ℓ(r1 + r2 − ρ/2) + δℓ,where δℓ = 1 if K ontains the ℓ-root of unity, and 0 otherwise, t0 is the number of prinipalideals in T (k), r1 = ΦR(K), r2 = ΦC(K) and ρ is the number of real plaes of k whihbeome omplex in K. Suppose that #Q ≥ C(T,K/k). Then K admits an in�nite unram�ed
ℓ-T (K)-lass �eld tower.One an onstrut suh yli extension using the Grunwald-Wang theorem (and sometimeseven expliitly by hand) and dedue the following result:Corollary 4.8 (Lebaque). � Let n be an integer and let t1, ..., tn be prime powers (NF)(powers of p (FF)). There exists an in�nite global �eld (both in the number �eld and funtion�eld ases) suh that φt1 , ..., φtn are all > 0.Another way to produe asymptotially good in�nite lass �eld towers is to use tamely rami�edinstead of unrami�ed lass �eld towers. This is the subjet of [HM01℄ and [HM02℄.The question of �nding asymptotially good towers with given Tsfasman�Vl duµ invariantsequal to zero is more di�ult. A related question is to �nd out whether an in�nite globalextension realizes the maximal loal extension at a given prime. Using results of J. Labute[Lab℄ and A. Shmidt [Sh℄, the following theorem is proven:Theorem 4.9 (Lebaque [Leb09℄). � Let P = {p1, . . . , pn} ⊂ Plf (Q). Assume that forany i = 1, . . . , n we have ni distint positive integers di,1, . . . , di,ni

. Let I ⊂ Plf (Q) be a �niteset of �nite plaes of Q suh that I ∩ P = ∅. There exists an in�nite global �eld K suh that:1. I ∩ Supp(K) = ∅,2. For any i = 1, . . . , n, and any j = 1, . . . , ni, φ
pi,Np

di,j
i

= φ∞

nidi,j
> 0.3. One an expliitly estimate φ∞ and the de�ieny in terms of P, I, ni and dij .The φp,q are invariants generalizing the lassial φq : they ount the asymptoti number ofprimes of norm q above a given prime p (see [Leb10℄ for a de�nition). In the ase of Q theyPubliations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 65oinide with the lassial ones. This extension is obtained as the ompositum of a �niteextension of Q with presribed positive Φ
pi,Npi

di,j > 0 and an in�nite lass �eld tower QP
S (ℓ)satisfying the K(π, 1) property of A. Shmidt.4.4. Bounds on the de�ieny. � We have already seen that, using towers of modularurves, one an produe in�nite funtion �elds over Fr with zero de�ieny. If r is a square,there are even towers with φr =

√
r−1. In the ase of number �elds no zero de�ieny in�nitenumber �elds are known. In fat we doubt that the lass �eld theory (whih is for now theonly method to produe asymptotially good in�nite number �elds) an ever give suh �eld.Let us quote here the example with the smallest known de�ieny due to F. Hajir and Ch.Maire [HM02℄.Let k = Q(ξ), where ξ is a root of f(x) = x6 + x4 − 4x3 − 7x2 − x+ 1. Consider the element

η = −671ξ5 + 467ξ4 − 994ξ3 + 3360ξ2 + 2314ξ − 961 ∈ Ok. Let K = k(
√
η). F. Hajir and Ch.Maire prove using a Golod�Shafarevih like result that K admits an in�nite tamely rami�edtower satisfying δ ≤ 0.137 . . . .5. Higher dimensional theoryIn this setion we will mostly onsider the funtion �eld ase sine most of the results weare going to mention are unavailable in the number �eld ase. However, we will give somereferenes to the number �eld ase as well.5.1. Number of points on higher dimensional varieties. � The question about themaximal number of points on urves over �nite �elds has been extensively studied by numerousauthors. The analogous question for higher dimensional varieties has reeived omparativelylittle attention most probably due to its being signi�antly more di�ult.As for the urves, we have the so-alled Weil bound whih is in this ase a famous theoremof Deligne. Similarly, this bound is not optimal and the general framework for improving itis provided by the expliit formulae. In the ase of urves over Fr Oesterlé managed to �ndthe best bounds available through the tehniques of expliit formulae for any given r 6= 2 (see[Ser85℄). A deade later the ase of arbitrary varieties over �nite �elds was treated by G.Lahaud and M. A. Tsfasman in [Tsf95℄ and [LT℄. Let us reprodue here the main resultsfrom [LT℄. To do so we will have to introdue some notation onerning varieties over �nite�elds.Let X be a non-singular absolutely irreduible projetive variety of dimension d de�ned overa �nite �eld Fr. We put Xf = X ⊗Fr Fqr and X = X ⊗Fr Fr. Let Φrf = Φrf (X) be thenumber of points of X having degree f . Thus, for the number Nf of Frf -points of the variety

Xf we have the formula Nf =
∑

m|f

mΦrm. We denote by bs(X) = dimQl
Hs(X,Ql) the l-adiBetti numbers of X.The family of inequalities proven in [LT℄ has a doubly positive sequene as a parameter. Letus introdue the orresponding notation. To a sequene of real numbers v = (vn)n≥0 wePubliations mathématiques de Besançon - 2011



66 Asymptoti methods in number theory and algebrai geometryassoiate the family of power series ψm,v(t) =
∞
∑

n=1
vmnt

n. We denote ψv(t) = ψ1,v(t) andlet ρv be the radius of onvergene of this power series. A doubly positive sequene v issuh a sequene that 0 ≤ vn ≤ v0 for all n, v0 = 1 and for any z ∈ C, |z| < 1 we have
1 + 2Reψv(t) ≥ 0.We will also need the funtions Fm,v(k, t) =

∞
∑

s=0
(−1)sψm,v(r−kst) =

∞
∑

n=1

vmntmn

1+r−mnk , Fv(k, t) =

F1,v(k, t). We let Av(z) = −min
|t|=z

Reψv(t) and denote I(k) = {i | 1 ≤ i ≤ 2d − 1, i 6= k, i 6=
2d− k} the set of indies. We have the following inequalities:Theorem 5.1 (Lahaud�Tsfasman). � For any odd integer k, 1 ≤ k ≤ d, any doublypositive sequene v = (vn)n≥0 with ρv > qk/2 and any M ≥ 1 we have

M
∑

m=1

mΦrm(X)ψm,v(r−(2d−k)/2) ≤ ψv(r−(2d−k)/2) + ψv(rk/2) +
bk
2

+

+
∑

i odd,i6=k

biAv(r−(i−k)/2) +
∑

i even biψv(r−(i−k)/2),and
M
∑

m=1

mΦrm(X)Fm,v(d− k, r−(2d−k)/2) ≤ Fv(d− k, r−(2d−k)/2) + Fv(d− k, rk/2)+

+
bk
2

+
∑

i∈I(k)

biFv(d− k, r−(i−k)/2).For example, taking the seond inequality with ψv(t) = t
2 we get the lassial Weil bound,taking the �rst one with ψv(t) = t

1−t we get (asymptotially) a diret generalization of theDrinfeld�Vl duµ bounds. These inequalities are not straightforward to apply. We refer thereader to [LT℄ for more details on how to make good hoies of the doubly positive sequene.Unfortunately, in the ase of dimension d ≥ 2 the optimal hoie of v is unknown.The asymptoti versions of these inequalities an be easily dedued from theorem 5.1 oneone introdues proper de�nitions. For a variety X let b(X) = max
i=0,...,d

bi(X) be the maximumof its l-adi Betti numbers.De�nition 5.2. � A family of varieties {Xj} is alled asymptotially exat if the limits
φrf = lim

j→∞

Φ
rf (Xj)

b(Xj ) and βi = lim
j→∞

bi(Xj)
b(Xj ) exist. It is asymptotially good if at least one of φrfis di�erent from zero.We an state the following orollary of theorem 5.1:Corollary 5.3. � In the notation of theorem 5.1 for an asymptotially exat family of vari-eties one hasPubliations mathématiques de Besançon - 2011
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M
∑

m=1

mφrmψm,v(r−(2d−k)/2) ≤ βk

2
+

∑

i odd,i6=k

βiAv(r−(i−k)/2) +
∑

i evenβiψv(r−(i−k)/2),and
M
∑

m=1

mφrmFm,v(d− k, r−(2d−k)/2) ≤ βk

2
+

∑

i∈I(k)

βiFv(d− k, r−(i−k)/2).Taking partiular examples of the sequene v one gets more tratable inequalities (see [LT℄).5.2. Brauer�Siegel type onjetures for abelian varieties over �nite �elds. � Onean ask about the possibility of extending the Brauer�Siegel theorem to the ase of varietiesover �nite �elds. The question is not as easy as it might seem. First, mimiking the proof oftheorem 3.4 one gets a result about the asymptoti behaviour of the residues of zeta funtionsof varieties at s = d (see [Zyk09℄). Suh a result would be interesting if there was a reasonableinterpretation for this residue in terms of geometri invariants of our variety.Two other approahes were suggested by B. Kunyavskii and M. Tsfasman and by M. Hindryand A. Paheo. Both of them have for their starting points the Birh and Swinnerton-Dyer(BSD) onjeture whih expresses the value at s = 1 of the L-funtion of an abelian variety interms of ertain arithmeti invariants related to this variety. However, the situation with theasymptoti behaviour of this speial value of the L-funtions is muh less lear than before.Let us begin with the approah of Kunyavskii and Tsfasman.Let K/Fr be a funtion �eld and let A/K be an abelian variety over K. We denote by
XA := |X(A/K)| the order of the Shafarevih�Tate group of A, and by RegA the determinantof the Mordell�Weil lattie of A (see [HP℄ for de�nitions). Note that in a ertain sense XAand RegA are the analogues of the lass number and of the regulator respetively. Kunyavskiiand Tsfasman make the following onjeture onerning families of onstant abelian varieties(see [KT℄):Conjeture 5.4. � Let A0 be a �xed abelian variety over Fr. Take an asymptotially exatfamily of funtion �eds K = {Ki} and put Ai = A0 ×Fr Ki. Then

lim
i→∞

logr(Xi · Regi)

gi
= 1 −

∞
∑

m=1

φrm(K) logr

|A0(Frm)|
rm

.This onjeture is atually stated as theorem in [KT℄. Unfortunately the hange of limits inthe proof given in [KT℄ is not justi�ed thus the proof an not be onsidered a valid one. Infat the �aw looks very di�ult to repair as the statement of the theorem an be redued(via a formula due to J. Milne, whih gives the BSD onjeture in this ase) to an equalityof the type lim
i→∞

log ζKi
(s)

gKi

= log ζK(s) at a given point s ∈ C with Re s = 1
2 (in fat s belongsto a �nite set of points depending on A0). As we have already mentioned in the disussionfollowing theorem 3.10 this question does not look aessible at the moment.Publiations mathématiques de Besançon - 2011



68 Asymptoti methods in number theory and algebrai geometryLet us turn our attention to the approah of Hindry and Paheo. They treat the ase in somesense �orthogonal� to that of Kunyavskii and Tsfasman. Here is the onjeture they make in[HP℄:Conjeture 5.5. � Consider the family {Ai} of non-onstant abelian varieties of �xed di-mension over the �xed funtion �eld K. We have
lim
i→∞

log(Xi · Regi)

logH(Ai)
= 1,where H(Ai) is the exponential height of Ai.Using deep arguments from the theory of abelian varieties over funtion �elds the onjeture isredued in [HP℄ to the one on zeroes of L-funtions of abelian varieties together with the BSDonjeture. Hindry and Paheo are atually faed with the problem of the type disussedafter theorem 3.10, this time for abelian varieties over funtion �elds.The following example serves as the evidene for the last onjeture (see [HP℄):Theorem 5.6 (Hindry�Paheo). � For the family of ellipti urves Ed over Fr(t), wherethe harateristi of Fr is not equal to 2 or 3, de�ned by the equations y2 +xy = x3− td, d ≥ 1and prime to r, the Tate�Shafarevih group X(Ed/K) is �nite and

log(Xd · Regd) ∼ logH(Ed) ∼
d log r

6
.The proof of this theorem uses a deep result of Ulmer [Ulm02℄ who established the BSD on-jeture in this ase and expliitly omputed the L-funtions of Ed. This redues the statementof the theorem to a an expliit (though highly non-trivial) estimate involving Jaobi sums.The onjetures 5.4 and 5.5 an be united (though not proved) within the general asymptotitheory of L-funtions over funtion �elds. Suh a theory also explains why we get 1 as a limitin the seond onjeture and a ompliated expression in the �rst one. We will sketh someaspets of the theory in the next subsetion.The analogous problem in the number �eld ase has also been onsidered [Hin℄. Unfortunatelyin the number �eld ase we do not have a single example supporting the onjeture.5.3. Asymptoti theory of zeta and L-funtions over �nite �elds. � The proofs ofthe results from this subsetion as well as lengthy disussions an be found in [Zyk11℄. Letus �rst de�ne axiomatially the lass of funtions we are going to work with. This resemblesthe so alled Selberg lass from the analyti number theory, but, of ourse the ase of funtion�elds is in�nitely easier from the analyti point of view, all funtions being rational (or evenpolynomial).De�nition 5.7. � An L-funtion L(s) over a �nite �eld Fr is a holomorphi funtion in ssuh that for u = q−s the funtion L(u) = L(s) is a polynomial with real oe�ients, L(0) = 1and all the roots of L(u) are on the irle of radius r− d

2 for some non-negative integer number
d whih is alled the weight of the L-funtion. We say that the degree of the polynomial L(u)Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 69is the degree of the orresponding L-funtion. A zeta funtion ζ(s) is a produt of L-funtionsin powers ±1 :

ζ(s) =
d

∏

k=0

Lk(s)
wk ,where wk ∈ {−1, 1} and Lk(s) is an L-funtion of weight k.Both zeta-funtions of smooth projetive urves or even varieties over �nite �elds and L-funtions of ellipti surfaes onsidered in the previous setions are overed by this de�nition.For the logarithm of a zeta funtion we have the Dirihlet series expansion:

log ζ(s) =

∞
∑

f=1

Λf

f
r−fswhih is onvergent for Re s > d

2 . In the ase of a variety X/Fr we have a simple interpretationfor the oe�ients Λf = |X(Frf )| as the number of points on X over the degree f extensionof Fr.We are going to work with zeta and L-funtions asymptotially, so we have to introdue thenotion of a family. We will all a sequene {ζk(s)}k=1...∞ =

{

d
∏

i=0
Lki(s)

wi

}

k=1...∞

of zetafuntions a family if the total degree gk =
d
∑

i=0
gki tends to in�nity and d remains onstant.Here gki are the degrees of the individual L-funtions Lki(s) in ζk(s).De�nition 5.8. � A family {ζk(s)}k=1...∞ of zeta-funtions is alled asymptotially exatif the limits

γi = lim
k→∞

gki

gk
and λf = lim

k→∞

Λkf

gkexist for eah i = 0, . . . , d and eah f ∈ Z, f ≥ 1. The family is alled asymptotially bad if
λf = 0 for any f and asymptotially good otherwise.In the ase of urves over �nite �elds the denominators of zeta funtions are negligible fromthe asymptoti point of view. In general we give the following de�nition:De�nition 5.9. � Let {ζk(s)} be an asymptotially exat family of zeta funtions. De�nethe set I ⊂ {0 . . . d} by the ondition i ∈ I if and only if γi = 0.We de�ne ζn,k(s) =

∏

i∈I

Lki(s)
withe negligible part of ζk(s) and ζe,k(s) =

∏

i∈{0,...,d}\I

Lki(s)
wi the essential part of ζk(s). De�nealso de = max{i | i /∈ I}.De�nition 5.10. � We say that an asymptotially exat family of zeta or L-funtions isasymptotially very exat if the series

∞
∑

f=1

|λf |q−
fde
2 Publiations mathématiques de Besançon - 2011



70 Asymptoti methods in number theory and algebrai geometryis onvergent.In the ase of urves or varieties the positivity of Λf automatially implies the fat thatthe orresponding family is asymptotially very exat. This is of ourse false in general (anobvious example of a family whih is asymptotially exat but not very exat is given by
Lk(s) = (1 − q−s)k). In general most of the results are proven for asymptotially very exatfamilies and not just for asymptotially exat ones.We have already noted that the onept of limit zeta funtions is of utmost importane in theasymptoti theory.De�nition 5.11. � Let {ζk(s)} be an asymptotially exat family of zeta funtions. Thenthe orresponding limit zeta funtion is de�ned as

ζlim(s) = exp





∞
∑

f=1

λf

f
q−fs



 .Now, we an state the generalizations of most of the results onerning zeta and L-funtionsover �nite �elds, given in the previous setions. Let us begin with the basi inequalities. Infat, one should be able to write most of the inequalities from subsetion 5.1 in this moregeneral setting. We give only the simplest statement of this type here:Theorem 5.12. � Let {ζk(s)} be an asymptotially very exat family of zeta funtions. Then
wde

∞
∑

j=1

λjq
− dej

2 ≤
de
∑

i=0

γi

q(de−i)/2 + wi
.The Brauer�Siegel type results an also be proven in this setting. The following theoreminludes all the funtion �eld versions of the Brauer�Siegel type results from setion 3 exeptfor the expliit ones (whih an also be, in priniple, established for general zeta and L-funtions).Theorem 5.13. � 1. For any asymptotially exat family of zeta funtions {ζk(s)} andany s with Re s > de

2 we have
lim

k→∞

log ζe,k(s)

gk
= log ζlim(s).If, moreover, 2Re s 6∈ Z, then

lim
k→∞

log ζk(s)

gk
= log ζlim(s).The onvergene is uniform in any domain de

2 + ǫ < Re s < de+1
2 − ǫ, ǫ ∈

(

0, 1
2

)

.2. If {ζk(s)} is an asymptotially very exat family with wde
= 1 we have:

lim
k→∞

log |ck|
gk

≤ log ζlim

(

de
2

)

,Publiations mathématiques de Besançon - 2011



Philippe Lebaque and Alexei Zykin 71where rk and ck are de�ned using the Taylor series expansion ζk(s) = ck
(

s− de

2

)rk +

O
(

(

s− de

2

)rk+1
)

.In the ase of arbitrary L-funtions the equality in (2) does not hold in general. This meansthat the similar questions previously disussed for funtion �elds or ellipti urves over fun-tion �elds are indeed of arithmeti nature.Finally we will state a result on the distribution of zeroes. Let L(s) be an L-funtion andlet ρ1, . . . , ρg be the zeroes of the orresponding polynomial L(u). De�ne θk ∈ (−π, π] by
ρk = q−d/2eiθk . One an assoiate the measure ∆L = 1

g

g
∑

k=1

δθk
to L(s).Theorem 5.14. � Let {Lj(s)} be an asymptotially very exat family of L-funtions. Thenthe limit distribution lim

j→∞
∆j exists and has a nonnegative ontinuous density funtion givenby an absolutely and uniformly onvergent series 1 − 2

∞
∑

k=1

λk cos(kx)q−
dk
2 .In the ase of families of ellipti urves over Fr(t) P. Mihel provides in [Mi℄ an expliitestimate for the disrepany in the equidistribution of zeroes and a muh more preise estimatefor it on average.A number of open questions onerning asymptoti properties of zeta and L-funtions an befound in the last setion of [Zyk11℄. It seems that an analogue of this general asymptotitheory an be developed in the number �eld ase (at least assuming some plausible onjetureslike GRH or the Ramanujan�Peterson onjeture). This is yet to be done.Referenes[BB℄ P. Beelen, I. Bouw. Asymptotially good towers and di�erential equations, Compos. Math. 141(2005), no. 6, 1405-1424.[BR℄ S. Ballet, R. Rolland. Families of urves over �nite �elds, PMB 2011, 5-18.[Bra℄ R. Brauer. On zeta-funtions of algebrai number �elds, Amer. J. Math. 69, Num. 2, 1947,243�250.[DPZ℄ I. Duursma, B. Poonen, M. Zieve. Everywhere rami�ed towers of global funtion �elds, Finite�elds and appliations, Leture Notes in Comput. Si., vol. 2948, Springer, Berlin, 2004, pp. 148-153.[DV℄ V. G. Drinfeld, S. G. Vl duµ. The number of points of an algebrai urve (in Russian), Funkt-sional. Anal. i Prilozhen. 17 (1983), no. 1, 68�69.[Elk℄ N. D. Elkies. Expliit towers of Drinfeld modular urves, Progress in Mathematis 202 (2001),189-198 (Proeedings of the 3rd European Congress of Mathematis, Barelona.[GSR℄ A. Garia, H. Stihtenoth, H.-G. Rük. On tame towers over �nite �elds, Journal für die Reineund Angewandte Mathematik, vol. 557(2003).[Hin℄ M. Hindry. Why is it di�ult to ompute the Mordell�Weil group. Proeedings of the onferene�Diophantine Geometry�, 197�219, Ed. Suola Normale Superiore Pisa, 2007.[HM01℄ F. Hajir, C. Maire. Tamely rami�ed towers and disriminant bounds for number �elds. Com-positio Math. 128 (2001), no. 1, 35-53.[HM02℄ F. Hajir, C. Maire. Tamely rami�ed towers and disriminant bounds for number �elds. II. J.Symboli Comput. 33 (2002), no. 4, 415-423. Publiations mathématiques de Besançon - 2011
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