
ARITHMETIC OF "UNITS" IN Fq[T ]

by

Bruno Anglès & Mohamed Ould Douh

Abstract. — The aim of this note is to study the arithmetic of Taelman’s unit module for
A := Fq[T ]. This module is the A-module (via the Carlitz module) generated by 1. Let P be
a monic irreducible polynomial in A, we show that the "P -adic behaviour" of 1 is connected
to some isotypic component of the ideal class group of the integral closure of A in the P th
cyclotomic function field. The results contained in this note are applications of the deep results
obtained by L. Taelman in [10].

Résumé. — Soit Fq un corps fini ayant q éléments et de caractéristique p, q ≥ 3. Nous mon-
trons que si P est un premier de Fq[T ] de degré d, le p-rang de la composante isotypique associée
au caractère de Teichmuller du p-sous-groupe de Sylow des points Fq-rationnels de la jacobienne
du P -ième corps de fonctions cyclotomique est entièrement déterminé par le "comportement
P -adique" de 1.

1. Background on the Carlitz module

Let Fq be a finite field having q elements, q ≥ 3, and let p be the characteristic of Fq. Let
T be an indeterminate over Fq, and set: k := Fq(T ), A := Fq[T ], A+ := {a ∈ A, amonic }.
A prime in A will be a monic irreducible polynomial in A. Let ∞ be the unique place of k
which is a pole of T, and set: k∞ := Fq(( 1

T )). Let C∞ be a completion of an algebraic closure
of k∞, then C∞ is algebraically closed and complete and we denote by v∞ the valuation on
C∞ normalized such that v∞(T ) = −1. We fix an embedding of an algebraic closure of k in
C∞, and thus all the finite extensions of k considered in this note will be contained in C∞.
Let L/k be a finite extension, we denote by:

• S∞(L): the set of places of L above ∞, if w ∈ S∞(L) we denote the completion of L at
w by Lw and we view Lw as a subfield of C∞,
• OL: the integral closure of A in L,
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6 Arithmetic of "units" in Fq[T ]

• Pic(OL): the ideal class group of L,
• L∞: the k∞-algebra L⊗k k∞, recall that we have a natural isomorphism of k∞-algebras:
L∞ '

∏
w∈S∞(L) Lw.

1.1. The Carlitz exponential. — Set D0 = 1 and for i ≥ 1, Di = (T q
i − T )Dq

i−1. The
Carlitz exponential is defined by:

eC(X) =
∑
i≥0

Xqi

Di
∈ k[[X]].

Since ∀i ≥ 0, v∞(Di) = −iqi, we deduce that eC defines an entire function on C∞ and that
eC(C∞) = C∞. Observe that:

eC(TX) = TeC(X) + eC(X)q.

Thus, ∀a ∈ A, there exists a Fq-linear polynomial φa(X) ∈ A[X] such that eC(aX) =
φa(eC(X)). The map φ : A → EndFq(A), a 7→ φa, is an injective morphism of Fq-algebras
called the Carlitz module.

Let εC = q−1
√
T − T q

∏
j≥1

(
1− T q

j − T
T qj+1 − T

)
∈ C∞. Then by [4] Theorem 3.2.8, we have the

following equality in C∞[[X]]:

eC(X) = X
∏

α∈εCA\{0}

(
1− X

α

)
.

Note that v∞(εC) = − q

q − 1
. Let logC(X) ∈ k[[X]] be the formal inverse of eC(X), i.e.

eC(logC(X)) = logC(eC(X)) = X. Then by [4] page 57, we have:

logC(X) =
∑
i≥0

Xqi

Li
,

where L0 = 1, and for i ≥ 1, Li = (T − T qi)Li−1. Observe that ∀i ≥ 0, v∞(Li) = −q
i+1 − q
q − 1

.

Therefore logC converges on {α ∈ C∞, v∞(α) > − q

q − 1
}. Furthermore, for α in C∞ such

that v∞(α) > − q

q − 1
, we have:

• v∞(eC(α)) = v∞(logC(α)) = v∞(α),

• eC(logC(α)) = logC(eC(α)) = α.

1.2. Torsion points. — We recall some basic properties of cyclotomic function fields. For
a nice introduction to the arithmetic properties of such fields, we refer the reader to [7]
Chapter 12. Let P be a prime of A of degree d. Set ΛP := {α ∈ C∞, φP (α) = 0}. Note
that the elements of ΛP are integral over A, and that ΛP is a A-module via φ which is

isomorphic to
A

PA
. Set λP = eC

(εC
P

)
, then λP is a generator of the A-module ΛP . Let

KP = k(ΛP ) = k(λP ). We have the following properties:
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Bruno Anglès and Mohamed Ould Douh 7

• KP /k is an abelian extension of degree qd − 1,
• KP /k is unramified outside P,∞,
• let RP = OKP

, then RP = A[λP ],
• if w ∈ S∞(KP ), the completion of KP at w is equal to k∞(εC), in particular the de-
composition group at w is equal to the inertia group at w and is isomorphic to F∗q ,

furthermore | S∞(KP ) |= qd − 1

q − 1
,

• KP /k is totally ramified at P and the unique prime ideal of RP above P is equal to
λPRP .

Let ∆ = Gal(KP /k). For a ∈ A \PA, we denote by σa the element in ∆ such that σa(λP ) =
φa(λP ). The map: A \ PA→ ∆, a 7→ σa induces an isomorphism of groups:(

A

PA

)∗
' ∆.

1.3. The unit module and the class module. —
Let R be an A-algebra, we denote by C(R) the Fq-algebra R equipped with the A-module
structure induced by φ, i.e. ∀r ∈ C(R), T.r = φT (r) = Tr + rq. For example, the Carlitz
exponential induces the following exact sequence of A-modules:

0 −→ εCA −→ C∞ −→ C(C∞) −→ 0.

Let L/K be a finite extension, then B. Poonen has proved in [6] that C(OL) is not a finitely
generated A-module. Recently, L. Taelman has introduced in [8] a natural sub-A-module of
C(OL) which is finitely generated and called the unit module associated to L and φ. First
note that the Carlitz exponential induces a morphism of A-modules: L∞ → C(L∞), and the
kernel of this map is a free A-module of rank | {w ∈ S∞(L), εC ∈ Lw} | . Now, let us consider
the natural map of A-modules induced by the inclusion C(OL) ⊂ C(L∞):

αL : C(OL) −→ C(L∞)

eC(L∞)
.

L. Taelman has proved the following remarkable results ([8], Theorem 1, Corollary 1):
• U(OL) := Ker(αL) is a finitely generated A-module of rank

[L : k]− | {w ∈ S∞(L), εC ∈ Lw} |,
the A-module (via φ) U(OL) is called the unit module attached to L and φ,
• H(OL) := Coker(αL) is a finite A-module called the class module associated to L and
φ.

Set:
ζOL

(1) :=
∑
I 6=(0)

1[
OL
I

]
A

∈ k∞,

where the sum is taken over the non-zero ideals of OL, and where for any finite A-module M,
[M ]A denotes the monic generator of the Fitting ideal of the finite A-module M. Then, we
have the following class number formula ([9], Theorem 1):

ζOL
(1) = [H(OL)]A [OL : e−1

C (OL)] ,
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8 Arithmetic of "units" in Fq[T ]

where [OL : e−1
C (OL)] ∈ k∗∞ is a kind of regulator (see [9] for more details).

2. The unit module for Fq[T ]

2.1. Sums of polynomials. — In this paragraph, we recall some computations made by
G. Anderson and D. Thakur ([2] pages 183, 184).
Let X,Y be two indeterminates over k. We define the polynomial Ψk(X) ∈ A[X] by the
following identity:

eC(XlogC(Y )) =
∑
k≥0

Ψk(X)Y qk .

We have that Ψ0(X) = X and for k ≥ 1:

Ψk(X) =
k∑
i=0

1

Di(Lk−i)q
iX

qi .

For a = a0 + a1T + · · ·+ anT
n, a0, · · · , an ∈ Fq, we have:

φa(X) =

n∑
i=0

[ai ]X
qi ,

where [ai ] ∈ A for i = 0, · · · , n, [a0] = a and [an] = an. But since eC(aX) = φa(eC(X)), we
deduce that for k ≥ 1:

Ψk(X) =
1

Dk

∏
a∈A(d)

(X − a),

where A(d) is the set of elements in A of degree strictly less than k. In particular:

Ψk(X + T k) = Ψk(X) + 1 =
1

Dk

∏
a∈A+,k

(X + a) ,

where A+,k is the set of monic elements in A of degree k. Now for j ∈ N and for i ∈ Z, set:

Sj(i) =
∑

a∈A+,j

ai ∈ k.

Note that the derivative of Ψk(X) is equal to 1
Lk
. Therefore we get:

1

Lk

1

Ψk(X) + 1
=

∑
a∈A+,k

1

X + a
.

Thus:
1

Lk

1

Ψk(X) + 1
=
∑
n≥0

(−1)nSk(−n− 1)Xn.

But:
Ψk(X) ≡ 1

Lk
X mod Xq.

Therefore:
∀k ≥ 0, for c ∈ {1, · · · , q − 1}, Sk(−c) =

1

Lck
.
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But observe that we also have:
1

Lk

1

Ψk(X) + 1
=
∑
n≥0

(−1)nSk(n)X−n−1.

But:
1

Ψk(X) + 1
≡ 0 (mod X−q

k
).

Therefore:
∀k ≥ 0, for i ∈ {0, · · · , qk − 2}, Sk(i) = 0.

The Bernoulli-Goss numbers, B(i) for i ∈ N, are elements of A defined as follows:

• B(0) = 1,

• if i ≥ 1 and i 6≡ 0 (mod q− 1), B(i) =
∑

j≥0 Sj(i) which is a finite sum by our previous
discussion,

• if i ≥ 1, i ≡ 0 (mod q − 1), B(i) =
∑

j≥0 jSj(i) ∈ A.
We have:

Lemma 2.1. — Let P be a prime of A of degree d and let c ∈ {2, · · · , q − 1}. Then:

B(qd − c) ≡
d−1∑
k=0

1

Lc−1
k

(mod P ).

Proof. — Note that qd − c is not divisible by q − 1 and that 1 ≤ qd − c < qd − 1. Thus:

B(qd − c) =
d−1∑
k=0

Sk(q
d − c).

Now, for k ∈ {0, · · · , d− 1}, we have:

Sk(q
d − c) ≡ Sk(1− c) (mod P ).

The lemma follows by our previous computations.

We will also need some properties of the polynomial Ψk:

Lemma 2.2. —
1) Let X,Y be two indeterminates over k. We have:

∀k ≥ 0, Ψk(XY ) =

k∑
i=0

Ψi(X)Ψk−i(Y )q
i
.

2) For k ≥ 0, we have:

ψk+1(X) =
Ψk(X)q −Ψk(X)

T qk+1 − T
.
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10 Arithmetic of "units" in Fq[T ]

Proof. —
1) Recall that we have seen that:

∀a ∈ A, φa(X) =
∑
k≥0

Ψk(a)Xqk .

Furthermore, for a ∈ A :

eC(aXlogC(Y )) = φa(eC(XlogC(Y ))).

Thus, for all a ∈ A :

∀k ≥ 0, Ψk(aX) =
k∑
i=0

Ψi(a)Ψk−i(X)q
i
.

The first assertion of the lemma follows.
2) For all a ∈ A, we have:

φa(TX +Xq) = Tφa(X) + φa(X)q.

Thus, for all a ∈ A :

∀k ≥ 0, ψk+1(a) =
Ψk(a)q −Ψk(a)

T qk+1 − T
.

Lemma 2.3. — Let P be a prime of A of degree d. We have:

φP (X) =
d∑

k=0

[Pk ]Xqk ,

where [P0 ] = P and [Pd ] = 1. Then, for k = 0, · · · , d− 1, P divides [Pk ] and:

[Pk ]

P
≡ 1

Lk
(mod P ).

Proof. — Since [Pk ] = Ψk(P ), the lemma follows from the second assertion of Lemma 2.2.

If we combine Lemma 2.1 and Lemma 2.3, we get:

Corollary 2.4. —
Let P be a prime of A of degree d. Then:

φP−1(1) ≡ PB(qd − 2) (mod P 2).

Remark 2.5. — D. Thakur has informed the authors that the congruence in Corollary 2.4
was already observed by him in [11].
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2.2. The unit module for Fqn [T ]. — Set kn = Fqn(T ) and An = Fqn [T ]. In this paragraph
we will determine U(An) and H(An). We have:

kn,∞ = kn ⊗k k∞ = Fqn((
1

T
)).

Let ϕ be the Frobenius of Fqn/Fq, recall that kn/k is a cyclic extension of degree n and its
Galois group is generated by ϕ. Set G = Gal(kn/k) and let α ∈ Fqn which generates a normal
basis of Fqn/Fq. Then An is a free A[G]-module of rank one generated by α. Note that:

kn,∞ = An ⊕
1

T
Fqn [[

1

T
]].

By the results of Paragraph 1.1:

logC(α) ∈ Fqn [[
1

T
]]∗,

and:

eC

(
1

T
Fqn [[

1

T
]]

)
=

1

T
Fqn [[

1

T
]].

Now:

kn,∞ =
n−1⊕
i=0

k∞logC(αq
i
).

Thus:

kn,∞ =
1

T
Fqn [[

1

T
]]⊕

n−1⊕
i=0

A logC(αq
i
).

Let Sn(A) be the sub-A-module of C(An) generated by Fqn , then Sn(A) is a free A-module
of rank n generated by {α, αq, · · · , αqn−1}. We have:

eC(kn,∞) = Sn(A)⊕ 1

T
Fqn [[

1

T
]].

Thus:
U(An) = An ∩ eC(kn,∞) = Sn(A),

and:

H(An) =
C(kn,∞)

C(An) + eC(kn,∞)
= {0}.

In particular, for n = 1, we get U(A) = S1(A) = the free A-module of rank one generated
(via φ) by 1 and H(A) = {0}.

Let F ∈ k∞[G] be defined by:

F =
n−1∑
i=0

 ∑
j≡i (mod n)

1

Lj

ϕi.

Then:

e−1
C (An) =

n−1⊕
i=0

A logC(αq
i
) = FAn.
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12 Arithmetic of "units" in Fq[T ]

Write n = mp`, where ` ≥ 0 and m 6≡ 0 (mod p). Let µm = {x ∈ C∞, xm = 1} which
is a cyclic group of order m. Then we can compute Taelman’s regulator (just calculate the
"determinant" of F ):

[An : e−1
C (An)] =

(−1)m−1
∏
ζ∈µm

n−1∑
i=0

 ∑
j≡i (mod n)

1

Lj

 ζi

p`

.

Thus, Taelman’s class number formula becomes in this case:

ζAn(1) =

(−1)m−1
∏
ζ∈µm

n−1∑
i=0

 ∑
j≡i (mod n)

1

Lj

 ζi

p`

.

In particular, we get the following formula already known by Carlitz:

ζA(1) = logC(1).

2.3. The P -adic behavior of "1". — Let P be a prime of A of degree d. Let CP be a
completion of an algebraic closure of the P -adic completion of k. Let vP be the valuation on
CP such that vP (P ) = 1. For x ∈ R, we denote the integer part of x by [x]. Let i ∈ N \ {0}
and observe that vP (T q

i − T ) = 1 if d divides i and vP (T q
i − T ) = 0 otherwise. Therefore:

• for i ≥ 0, vP (Li) = [i/d],

• for i ≥ 0, vP (Di) =
qi − qi−[i/d]d

qd − 1
.

This implies that logC(α) converges for α ∈ CP such that vP (α) > 0, and that eC(α) converges

for α ∈ CP such that vP (α) >
1

qd − 1
. Furthermore, for α ∈ CP such that vP (α) >

1

qd − 1
,

we have:
• vP (eC(α)) = vP (logC(α)) = vP (α),
• eC(logC(α)) = logC(eC(α)) = α.

Lemma 2.6. — Let AP be the P -adic completion of A. There exists x ∈ AP such that
φP (x) = φP−1(1) if and only if φP−1(1) ≡ 0 (mod P 2).

Proof. — First assume that φP−1(1) 6≡ 0 (mod P 2). By Lemma 2.3, we have that
vP (φP−1(1)) = 1, and therefore φP (X) − φP−1(1) ∈ AP [X] is an Eisenstein polynomial. In
particular φP−1(1) 6∈ φP (AP ).
Now, let us assume that φP−1(1) ≡ 0 (mod P 2). Then vP (logC(φP−1(1))) = vP (φP−1(1)).
Therefore, there exists y ∈ PAP such that:

logC(φP−1(1)) = Py.

Set x = eC(y) ∈ PAP . We have:

φP (x) = eC(Py) = eC (logC(φP−1(1))) = φP−1(1).

Remark 2.7. — Since 1 is an Anderson’s special point for the Carlitz module, the above
lemma can also be deduced by Corollary 2.4 and the work of G. Anderson in [1].
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3. Hilbert class fields and the unit module for Fq[T ]

Let P be a prime of A of degree d. Recall that KP is the P th-cyclotomic function field, i.e. the
finite extension of k obtained by adjoining to k the P th-torsion points of the Carlitz module.
Let RP be the integral closure of A in KP and let ∆ be the Galois group of KP /k. Recall that
∆ is a cyclic group of order qd − 1 (see Paragraph 1.2). Recall that the unit module U(A) is
the free A-module (via φ) generated by 1 (see Paragraph 2.2).

3.1. Kummer theory. — We will need the following lemma:

Lemma 3.1. — The natural morphism of A-modules:
U(A)

P.U(A)
−→ C(KP )

P.C(KP )
induced by the

inclusion U(A) ⊂ C(KP ), is an injective map.

Proof. — Recall that KP,∞ = KP ⊗k k∞. Let Tr : KP,∞ → k∞ be the trace map. Now let
x ∈ U(A) ∩ P.C(KP ). Then there exists z ∈ KP such that φP (z) = x. Since eC(KP,∞) is
A-divisible, we get that z ∈ U(RP ). Thus Tr(z) ∈ U(A). But:

−x = φP (Tr(z)).

Therefore x ∈ P.U(A).

Let U = {z ∈ C∞, φP (z) ∈ U(A)}. Then U is an A-module (via φ) and P.U = U(A). Therefore
the multiplication by P gives rise to the following exact sequence of A-modules:

0 −→ ΛP ⊕ U(A) −→ U −→ U(A)

P.U(A)
−→ 0.

Set γ = eC(P−1
P logC(1)). Then γ ∈ U. Set L = KP (U). By the above exact sequence, we

observe that:
L = KP (γ).

Furthermore L/k is a Galois extension and we set: G = Gal(L/KP ) and G = Gal(L/k). Let
δ ∈ ∆ and select δ̃ ∈ G such that the restriction of δ̃ to KP is equal to δ. Let g ∈ G, then
δ̃gδ̃−1 ∈ G does not depend on the choice of δ̃. Therefore G is a Fp[∆] -module.

Lemma 3.2. — We have a natural isomorphism of Fp[∆]-modules:

G ' HomA

(
U(A)

P.U(A)
,ΛP

)
.

Proof. — Recall that the multiplication by P induces an A-isomorphism:
U

ΛP ⊕ U(A)
' U(A)

P.U(A)
.

For z ∈ U and g ∈ G, set:
< z, g >= z − g(z) ∈ ΛP .

One can verify that:
• ∀z1, z2 ∈ U, ∀g ∈ G, < z1 + z2, g >=< z1, g > + < z2, g >,
• ∀z ∈ U, ∀g1, g2 ∈ G, < z, g1g2 >=< z, g1 > + < z, g2 >,
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• ∀z ∈ U,∀a ∈ A,∀g ∈ G, < φa(z), g >= φa(< z, g >),

• ∀z ∈ U, ∀g ∈ G, ∀δ ∈ ∆, < δ̃(z), δ.g >= δ(< z, g >), where δ̃ ∈ G is such that its
restriction to KP is equal to δ,
• let g ∈ G then: < z, g >= 0 ∀z ∈ U if and only if g = 1.

Let z ∈ U be such that < z, g >= 0 ∀g ∈ G. Then z ∈ UG. Thus z ∈ KP and φP (z) ∈ U(A).
Thus, by Lemma 3.1, we get φP (z) ∈ P.U(A), and therefore z ∈ ΛP ⊕ U(A).
We deduce from above that < ., . > induces a non-degenerate and ∆-equivariant bilinear map:

U(A)

P.U(A)
×G −→ ΛP .

3.2. Class groups. — Let ωP : ∆ ' (A/PA)∗ be the cyclotomic character, i.e. ∀a ∈
A \ PA, ωP (σa) ≡ a (mod P ). Let W = Zp[µqd−1], and fix ρ : A/PA → W/pW a Fp-
isomorphism. We still denote by ωP the morphism of groups ∆ ' µqd−1 which sends σa to
the unique root of unity congruent to ρ(ωP (a)) modulo pW. Observe that ∆̂ := Hom(∆,W ∗)

is a cyclic group of order qd − 1 generated by ωP . For χ ∈ ∆̂, we set:

• eχ = 1
qd−1

∑
δ∈∆ χ(δ)δ−1 ∈W [∆],

• [χ] = {χpj , j ≥ 0} ⊂ ∆̂,

• e[χ] =
∑

ψ∈[χ] eψ ∈ Zp[∆].

Let Pic(RP ) be the ideal class group of the Dedekind domain RP .

Corollary 3.3. — The Zp[∆]-module: e[ωP ](Pic(RP )⊗ZZp) is a cyclic module. Furthermore,
it is non trivial if and only if B(qd − 2) ≡ 0 (mod P ).

Proof. — Recall that H(A) = {0}. Note that the trace map induces a surjective morphism
of A-modules H(RP )→ H(A). Therefore:

H(RP )∆ = {0}.

Now, note that, ∀χ ∈ ∆̂, we have an isomorphism of W -modules:

eχ(Cl0(KP )⊗Z W ) ' eχp(Cl0(KP )⊗Z W ).

Thus by [3] we get that e[ωP ](Cl
0(KP )⊗Z Zp) is a cyclic Zp[∆]-module. Furthermore, by [5],

this latter module is non-trivial if and only if B(qd− 2) ≡ 0 (mod P ). We conclude the proof
by noting that:

e[ωP ]

(
Cl0(KP )⊗Z Zp

)
' e[ωP ] (Pic(RP )⊗Z Zp) .

Recall that L = KP (γ) where γ = eC

(
P − 1

P
logC(1)

)
. Since γ ∈ OL, the derivative of

φP (X) − φP−1(1) is equal to P, and eC(KP,∞) is A-divisible, we conclude that L/KP is
unramified outside P and every place of KP above ∞ is totally split in L/KP . Furthermore,
by Lemma 2.6:
• if φP−1(1) ≡ 0 (mod P 2), L/KP is unramified,
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• if φP−1(1) 6≡ 0 (mod P 2), L/KP is totally ramified at the unique prime of RP above P
(see the proof of Lemma 2.6).

Let H/KP be the Hilbert class field of RP , i.e. H/KP is the maximal unramified abelian
extension of KP such that every place in S∞(KP ) is totally split in H/KP . Then the Artin
symbol induces a ∆-equivariant isomorphism:

Pic(RP ) ' Gal(H/KP ).

Note that e[ωP ]G = G, where G = Gal(L/KP ). Thus the Artin symbol induces a Fp[∆]-
morphism:

ψ : e[ωP ]

(
Pic(RP )

pPic(RP )

)
−→ Gal(L ∩H/KP ).

Therefore, by Corollary 3.3 and Lemma 3.2, we get the following result which explains the
congruence of Corollary 2.4:

Theorem 3.4. — The morphism of Fp[∆]-modules induced by the Artin map:

ψ : e[ωP ]

(
Pic(RP )

pPic(RP )

)
−→ Gal(L ∩H/KP ),

is an isomorphism, where L = KP

(
eC

(
P − 1

P
logC(1)

))
and H is the Hilbert class field of

RP .

3.3. Prime decomposition of units. — A natural question arises: are there infinitely
many primes P such that φP−1(1) ≡ 0 (mod P 2)?
We end this note by some remarks centered around this question.

Lemma 3.5. — Let N(d) be the number of primes P of degree d such that φP−1(1) 6≡ 0
(mod P 2). Then:

N(d) >
1

d
(q − 1)qd−1 − q

d(q − 1)
qd/2.

Proof. — Let Nq(d) be the number of primes of degree d. Then:

Nq(d) >
1

d
qd − q

d(q − 1)
qd/2.

Let M(d) be the number of primes P of degree d such that φP−1(1) ≡ 0 (mod P 2). Set:

V (d) =

d−1∑
i=0

Ld−1

Li
∈ A.

Then degTV (d) = qd−1, and if P is a prime of degree d, we have by Lemma 2.3 : φP−1(1) ≡ 0
(mod P 2) if and only if V (d) ≡ 0 (mod P ). Therefore:

M(d) ≤ 1

d
qd−1.
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16 Arithmetic of "units" in Fq[T ]

Remark 3.6. — We have:
V (2) = 1 + T − T q.

Thus V (2) is (up to sign) the product of q/p primes of degree p. Therefore there exist primes
P of degree 2 such that φP−1(1) ≡ 0 (mod P 2) if and only if p = 2, and in this case there are
exactly q/2 such primes.

Set H(X) =
∑p−1

i=0
1
i!X

i ∈ Fp[X]. Let S be the set of roots of H(X) in C∞. Note that
| S |= p−1. Let us suppose that S ⊂ Fq. Let P be a prime of A such that P divides T q−T−α
for some α ∈ F∗q . Observe that such a prime is of degree p. Now, for k = 0, · · · , p−1, we have:

Lk ≡
1

k!
(−α)k (mod P ).

Therefore:

V (p) =

p−1∑
i=0

Lp−1

Li
≡ −αp−1H(

−1

α
) (mod P ).

Thus there exist at least (p−1) qp primes P in A of degree p such that φP−1(1) ≡ 0 (mod P 2).

Lemma 3.7. — Let P be a prime of degree A and let n ≥ 1. We have an isomorphism of
A-modules:

C

(
A

PnA

)
' A

Pn−1(P − 1)A
.

Proof. — We first treat the case n = 1. By Lemma 2.3, we have: φP (X) ≡ Xqd (mod P ).
Therefore (P − 1)C(A/PA) = {0}. Now let Q ∈ A such that Q.C(A/PA) = {0}. Then the
polynomial φQ(X) (mod P ) ∈ (A/PA)[X] has qd roots in A/PA. Thus degTQ ≥ d.This
implies that C(A/PA) is a cyclic A-module isomorphic to A/(P − 1)A.
Now let us assume that n ≥ 2. By Lemma 2.3, we have:

∀a ∈ PA, vP (φP (a)) = 1 + vP (a).

This implies that C(PA/PnA) is a cyclic A-module isomorphic to A/Pn−1A and P is a
generator of this module. The lemma follows from the fact that we have an exact sequence
of A-modules:

0 −→ C

(
PA

PnA

)
−→ C

(
A

PnA

)
−→ C

(
A

PA

)
−→ 0.

We deduce from the above lemma:

Corollary 3.8. — Let P be a prime of A. Then φP−1(1) ≡ 0 (mod P 2) if and only if there
exists a ∈ A \ PA such that φa(1) ≡ 0 (mod P 2).

This latter corollary leads us to the following problem:

Question 3.9. — Let b ∈ A+. Is it true that there exists a prime Q of A, Q ≡ 1 (mod b),
such that φQ(1) is not squarefree?

A positive answer to that question has the following consequence:
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Lemma 3.10. — Assume that for every b ∈ A+, we have a positive answer to question 1.
Then, there exist infinitely many primes P such that φP−1 ≡ 0 (mod P 2).

Proof. — Let S be the set of primes P such that φP−1(1) ≡ 0 (mod P 2). Let us assume that
S is finite. Write S = {P1, · · · , Ps}. Set b = 1 +

∏s
i=1(Pi − 1) (if S = ∅, b = 1). Let Q be a

prime of A such that φQ(1) is not squarefree and Q ≡ 1 (mod b). Then there exists a prime
P of A such that:

φQ(1) ≡ 0 (mod P 2).

Since φP (1) ≡ 1 (mod P ), we have P 6= Q and therefore Q ∈ A \ PA. Furthermore, for
i = 1, · · · , s, Q is prime to Pi − 1. Therefore, by Lemma 3.7, φQ(1) 6≡ 0 (mod P 2

i ). Thus
P 6∈ S which is a contradiction by Corollary 3.8.
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