ARITHMETIC OF "UNITS" IN F,[T]

by

Bruno Anglés & Mohamed Ould Douh

Abstract. — The aim of this note is to study the arithmetic of Taelman’s unit module for
A := F4[T]. This module is the A-module (via the Carlitz module) generated by 1. Let P be
a monic irreducible polynomial in A, we show that the "P-adic behaviour" of 1 is connected
to some isotypic component of the ideal class group of the integral closure of A in the Pth
cyclotomic function field. The results contained in this note are applications of the deep results
obtained by L. Taelman in [10].

Résumé. — Soit Fy un corps fini ayant g éléments et de caractéristique p, ¢ > 3. Nous mon-
trons que si P est un premier de Fy[7T] de degré d, le p-rang de la composante isotypique associée
au caractére de Teichmuller du p-sous-groupe de Sylow des points F,-rationnels de la jacobienne
du P-iéme corps de fonctions cyclotomique est entiérement déterminé par le "comportement
P-adique" de 1.

1. Background on the Carlitz module

Let IF, be a finite field having ¢ elements, ¢ > 3, and let p be the characteristic of F,. Let
T be an indeterminate over F,, and set: k := Fy(T), A := F,[T], A} := {a € A, amonic }.
A prime in A will be a monic irreducible polynomial in A. Let oo be the unique place of k
which is a pole of T, and set: ko, := Fy((7)). Let Coo be a completion of an algebraic closure
of keo, then C is algebraically closed and complete and we denote by v, the valuation on
Coo normalized such that v, (7)) = —1. We fix an embedding of an algebraic closure of k in
Cxo, and thus all the finite extensions of k considered in this note will be contained in C,.
Let L/k be a finite extension, we denote by:

e Sw(L): the set of places of L above oo, if w € Sy (L) we denote the completion of L at
w by L,, and we view L,, as a subfield of C,

e Op: the integral closure of A in L,
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6 Arithmetic of "units" in Fg4[T]

e Pic(Op): the ideal class group of L,

o L. the ky-algebra L ®j ks, recall that we have a natural isomorphism of k..-algebras:
Loo ~ HwESoo(L) Ly.

1.1. The Carlitz exponential. — Set Dy = 1 and for ¢ > 1, D; = (Tqi —T)D{ . The
Carlitz exponential is defined by:

cc(X) = 30 € kX))

i>0 ¢

Since Vi > 0, voo(D;) = —iq’, we deduce that ec defines an entire function on C4, and that
ec(Cx) = Cx. Observe that:

ec(TX) =Tec(X) + ec(X)?.

Thus, Va € A, there exists a Fy-linear polynomial ¢,(X) € A[X] such that ec(aX) =
¢a(ec(X)). The map ¢ : A — Endp, (A), a — ¢q, is an injective morphism of Fy-algebras
called the Carlitz module.

Let eo =T 'WT =T ]] <1 —
j=1
following equality in Coo[[X]]:

eccX)=Xx ] (1—5).

acecA\{0}

T —T
TaT T € Cx. Then by [4] Theorem 3.2.8, we have the

Note that ve(ec) = —Ll. Let logo(X) € Kk[[X]] be the formal inverse of ec(X), i.e.
q J—
ec(logo(X)) = loge(ec(X)) = X. Then by [4] page 57, we have:

x4
{ = —
ogc(X) Z I
>0
- ¢t —q
where Lo = 1, and for i > 1, L; = (T — T%)L;_1. Observe that Vi > 0, voo(L;) = 1
q—

Therefore loge converges on {a € Co, voo() > —Ll} Furthermore, for a in Cy such
q —_
that v (a) > —Ll, we have:
q—

* V(ec(a)) = vao(logo(a)) = veo (@),

e ec(logo(a)) = loge(ec(a)) = a.
1.2. Torsion points. — We recall some basic properties of cyclotomic function fields. For
a nice introduction to the arithmetic properties of such fields, we refer the reader to [7]

Chapter 12. Let P be a prime of A of degree d. Set Ap := {a € Cw, ¢p(a) = 0}. Note
that the elements of Ap are integral over A, and that Ap is a A-module via ¢ which is

A
isomorphic to A Set Ap = ec (%), then Ap is a generator of the A-module Ap. Let
Kp =k(Ap) = k(Ap). We have the following properties:
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e Kp/k is an abelian extension of degree ¢% — 1,
e Kp/k is unramified outside P, oo,
e let Rp = Ok, then Rp = A[Ap],

o if w € S(Kp), the completion of Kp at w is equal to ks (e¢), in particular the de-
composition group at w is equal to the inertia group at w and is isomorphic to Ky,

¢’ -1
furthermore | Soo (Kp) |= T
q—
e Kp/k is totally ramified at P and the unique prime ideal of Rp above P is equal to

ApRp.
Let A = Gal(Kp/k). For a € A\ PA, we denote by o, the element in A such that o,(Ap) =
¢a(Ap). The map: A\ PA — A, a + 0, induces an isomorphism of groups:

A *
<PA> ~ A

1.3. The unit module and the class module. —

Let R be an A-algebra, we denote by C(R) the Fy-algebra R equipped with the A-module
structure induced by ¢, i.e. Vr € C(R), T.r = ¢r(r) = Tr + r?. For example, the Carlitz
exponential induces the following exact sequence of A-modules:

0 —ecA— Cx — C(Csx) — 0.

Let L/K be a finite extension, then B. Poonen has proved in [6] that C(Op) is not a finitely
generated A-module. Recently, L. Taelman has introduced in [8] a natural sub-A-module of
C(Op) which is finitely generated and called the unit module associated to L and ¢. First
note that the Carlitz exponential induces a morphism of A-modules: Lo, — C(Ls), and the
kernel of this map is a free A-module of rank | {w € So(L), ec € Ly} | . Now, let us consider
the natural map of A-modules induced by the inclusion C(Op) C C(Lso):

C(Lo)
ec(Leo)’
L. Taelman has proved the following remarkable results (|8], Theorem 1, Corollary 1):

ag, . C(OL) —

e U(Op) :=Ker(ay) is a finitely generated A-module of rank
[L:k]— | {we Sx(L), ec € Ly} |,
the A-module (via ¢) U(Op) is called the unit module attached to L and ¢,
e H(Op) := Coker(ay,) is a finite A-module called the class module associated to L and
o.
Set: .
COL(l) = Z T S k'oo,
I£0) [T | 4
where the sum is taken over the non-zero ideals of O, and where for any finite A-module M,

[M] 4 denotes the monic generator of the Fitting ideal of the finite A-module M. Then, we
have the following class number formula ([9], Theorem 1):

Co, (1) = [H(OL)]a[Or : ¢! (OL)]

Publications mathématiques de Besangon - 2012/2



8 Arithmetic of "units" in Fg4[T]

where [0y, : e;'(OL)] € k%, is a kind of regulator (see [9] for more details).

2. The unit module for F,[T]

2.1. Sums of polynomials. — In this paragraph, we recall some computations made by
G. Anderson and D. Thakur (2] pages 183, 184).

Let X,Y be two indeterminates over k. We define the polynomial ¥y (X) € A[X] by the
following identity:

ec(Xloge(Y)) = > Wp(X)Y?

k>0
We have that ¥(X) = X and for k£ > 1:
U(X)=) ——— X9,
ZZ; Di(Li—i)1
Fora=ao+a1T+---+a,T", ag, -+ ,a, € Fy, we have:

da(X) = 3_[XT,
=0
where [¢] € A for i =0,---,n, [§] = a and [%] = a,. But since ec(aX) = ¢4(ec(X)), we

)

deduce that for k£ > 1:

Up(X) = Z)kael;](:d)(X —a),

where A(d) is the set of elements in A of degree strictly less than k. In particular:
1
V(X +TH =0 (X)+1== [] X +a),
Dy,
aEA_hk
where A j, is the set of monic elements in A of degree k. Now for j € N and for i € Z, set:
Siiy= > a €k
aEAjL,j

Note that the derivative of Uy (X) is equal to Lik Therefore we get:

1 1 B Z 1
LpyVp(X)+1 X+a

a€Ay i
Thus: ) ) ) )
LTI ;)(—1) Sk(—n —1)X".
But: ;
V(X)) = L—kX mod X7.
Therefore:

1
Vk >0, force {1,---,q— 1}, Sp(—c) = To

k
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But observe that we also have:
1 1

—_—— = -1H"s XL
Ly, U(X) + 1 ;)( )\ S(n)
But:
b 0 (mod X—qk)
VLX) +1 © '
Therefore:

Yk >0, fori € {0,---,¢" — 2}, Sk(i) = 0.

The Bernoulli-Goss numbers, B(i) for i € N, are elements of A defined as follows:
e B(0) =1,

e ifi>1andi#0 (mod g—1), B(i) =3 ;5 S;(i) which is a finite sum by our previous
discussion,

e ifi>1,i=0 (mod g—1), B(i) =};5,95(i) € A.
We have:

Lemma 2.1. — Let P be a prime of A of degree d and let ¢ € {2,--- ,q — 1}. Then:

d—1

B(¢% —¢) = Z Lcll (mod P).
=0 "k

o

Proof. — Note that ¢¢ — ¢ is not divisible by ¢ — 1 and that 1 < ¢¢ — ¢ < ¢% — 1. Thus:

d—1
B(¢" = ¢) =) _ Si(q” — o).
k=0

Now, for k € {0,--- ,d — 1}, we have:
Se(qg?—¢)=Si(1—¢) (mod P).
The lemma follows by our previous computations. ]

We will also need some properties of the polynomial Wy:

Lemma 2.2. —
1) Let X,Y be two indeterminates over k. We have:
k .
VE >0, Up(XY) = Z (X)W (V)T
i=0
2) For k > 0, we have:
U (X)? — Wi (X)

wk-&-l(X) = T _
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10 Arithmetic of "units" in Fg4[T]

Proof. —
1) Recall that we have seen that:

Va € A, do(X) = Up(a)X7.
k>0

Furthermore, for a € A :

ec(aXlogo(Y)) = ¢a(ec(Xloge(Y))).

Thus, for all a € A :
k .
VEk >0, Up(aX) =) Wi(a)Tpy(X)7.
i=0
The first assertion of the lemma follows.
2) For all a € A, we have:

Ga(TX + X)) =Tho(X) + ¢o(X)1.
Thus, for all a € A :

\I/k a)? — \I/k a
Vk >0, Ypi1(a) = ;q)kJrl — T( )'

Lemma 2.3. — Let P be a prime of A of degree d. We have:

Proof. — Since [['] = U(P), the lemma follows from the second assertion of Lemma O
If we combine Lemma [2.1] and Lemma [2.3] we get:

Corollary 2.4. —
Let P be a prime of A of degree d. Then:

¢p_1(1) = PB(¢* —2) (mod P?).

Remark 2.5. — D. Thakur has informed the authors that the congruence in Corollary
was already observed by him in [11].
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2.2. The unit module for Fy»[T]. — Set k,, = F¢n(T") and A,, = F¢»[T]. In this paragraph
we will determine U(A4,,) and H(A,). We have:
1

Let ¢ be the Frobenius of Fyn /F,, recall that k,/k is a cyclic extension of degree n and its
Galois group is generated by ¢. Set G = Gal(k;,,/k) and let o € F,» which generates a normal
basis of Fyn /F,. Then A, is a free A[G]-module of rank one generated by «. Note that:

1

1

By the results of Paragraph

1
Fl[=]1]*

loge () € Fyr [
and:

1 1 1 1

cc (7Frlizl) = 7Folizl:
Now:
n—1 '_
kinoo = EP kosclogo(a®).
=0

Thus:

1. 1. 7 ;

Fnoo = ZFgn[[]] @ @ Aloge(a).
Let &,,(A) be the sub-A-module of C(A;,) generated by Fn, then &,(A) is a free A-module
of rank n generated by {a, a?,- - ,aq"_l}. We have:
1 1
Thus:
U(An) = Ap Neclknoo) = 6n(A),
and: ko)
H(A,) = ke = {0}.

C(An) + GC(kn,w)
In particular, for n = 1, we get U(A) = &1(A) = the free A-module of rank one generated
(via ¢) by 1 and H(A) = {0}.

Let F' € koo|G] be defined by:

F= S "
— \ L;
=0 \j=i¢ (mod n)
Then:
n—1
ec' (An) = P Aloge (o) = F A,
=0
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12 Arithmetic of "units" in Fg4[T]

Write n = mp®, where £ > 0 and m # 0 (mod p). Let py, = {x € Cs, 2™ = 1} which
is a cyclic group of order m. Then we can compute Taelman’s regulator (just calculate the
"determinant" of F):

2
n—1 p

_ _ 1 ;
[An : ecl(An)] = (_1)m ! H Z Z - ¢
Cepum \ =0 \j=i (mod n) J
Thus, Taelman’s class number formula becomes in this case:

n—1 b

ao=Co (X X )¢
(epm \ =0 \j=i (mod n) J

In particular, we get the following formula already known by Carlitz:
Ga(1) = loge(1).

2.3. The P-adic behavior of "1". — Let P be a prime of A of degree d. Let Cp be a
completion of an algebraic closure of the P-adic completion of k. Let vp be the valuation on
Cp such that vp(P) = 1. For x € R, we denote the integer part of = by [z]. Let i € N\ {0}

and observe that vp(T9 — T) =1 if d divides i and vp(T9 — T) = 0 otherwise. Therefore:
e for ¢ > 0, UP(Li) = [Z/d],
¢ — gi~li/dd
¢4 —1
This implies that logc (o) converges for o« € Cp such that vp(a) > 0, and that ec(«) converges
1

e for i >0, vp(D;) =

for & € Cp such that vp(a) > T Furthermore, for a € Cp such that vp(a) >

¢4 — @1

we have:

e vp(ec(a)) = vp(loge(a)) = vp(a),

e ec(logo(a)) =logo(ec(a)) = a.
Lemma 2.6. — Let Ap be the P-adic completion of A. There exists x € Ap such that
¢p(x) = ¢p-1(1) if and only if pp—1(1) =0 (mod P?).
Proof. — First assume that ¢p_1(1) #Z 0 (mod P?). By Lemma , we have that
vp(pp—1(1)) = 1, and therefore ¢p(X) — ¢p_1(1) € Ap[X] is an Eisenstein polynomial. In

particular ¢p_1(1) & ¢p(Ap).
Now, let us assume that ¢p_1(1) = 0 (mod P?). Then vp(logc(¢p_1(1))) = vp(dpp_1(1)).
Therefore, there exists y € PAp such that:

logc(¢pp—1(1)) = Py.
Set x = ec(y) € PAp. We have:
¢p(z) = ec(Py) = ec (logc(¢p-1(1))) = ¢p-1(1).
U

Remark 2.7. — Since 1 is an Anderson’s special point for the Carlitz module, the above
lemma can also be deduced by Corollary [2.4] and the work of G. Anderson in [1].
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3. Hilbert class fields and the unit module for F,[T]

Let P be a prime of A of degree d. Recall that K p is the Pth-cyclotomic function field, i.e. the
finite extension of k£ obtained by adjoining to k the Pth-torsion points of the Carlitz module.
Let Rp be the integral closure of A in Kp and let A be the Galois group of Kp/k. Recall that
A is a cyclic group of order ¢? — 1 (see Paragraph . Recall that the unit module U(A) is
the free A-module (via ¢) generated by 1 (see Paragraph [2.2).

3.1. Kummer theory. — We will need the following lemma:

U4) | C(Kp)

Lemma 3.1. — The natural morphism of A_mOdUZeS:P,U(A) P.C(Kp)

induced by the
inclusion U(A) C C(Kp), is an injective map.

Proof. — Recall that Kpo, = Kp ®, koo Let T'r : Kp oo — koo be the trace map. Now let
x € U(A) N P.C(Kp). Then there exists z € Kp such that ¢p(z) = x. Since ec(Kpoo) is
A-divisible, we get that z € U(Rp). Thus Tr(z) € U(A). But:
—x = ¢p(Tr(z2)).
Therefore x € P.U(A).
0

Let 4 = {z € Cw, ¢p(2) € U(A)}. Then il is an A-module (via ¢) and P8k = U(A). Therefore
the multiplication by P gives rise to the following exact sequence of A-modules:

U(A)
PU(A)
Set v = ec(%logc(l)). Then v € 4. Set L = Kp(Y)
observe that:

— 0.

0—ApadU4) — U —
. By the above exact sequence, we

L =Kp(7).
Furthermore L/k is a Galois extension and we set: G = Gal(L/Kp) and & = Gal(L/k). Let
0 € A and select § € & such that the restriction of S5 to Kp is equal to 0. Let g € G, then
595_ € G does not depend on the choice of 8. Therefore G is a F,[A] -module.

Lemma 3.2. — We have a natural isomorphism of Fp[A]-modules:
U(A)
~H Ap ).
= Homs (77504
Proof. — Recall that the multiplication by P induces an A-isomorphism:
i U

Ap®U(A)  PU(A)
For z € 4 and g € G, set:
<z,9g>=z—g(z) € Ap.
One can verify that:
o V21,20 € U Vg EG, <21+ 29,9 >=< 21,9 >+ < 22,9 >,
o Vzel Vg1,90 € G, < 2,0192 >=< 2,91 > + < 2,92 >,
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14 Arithmetic of "units" in Fg4[T]

o Vz el Va€ A Vg € G, < ¢u(2),9 >= da(< 2,9 >),

e Vz € Vg € G,VI € A, < g(z),é.g >= §(< z,9 >), where 5 € & is such that its
restriction to Kp is equal to 4,

e let g € G then: < z,g >=0Vz € U if and only if g = 1.

Let z €  be such that < z,g >= 0 Vg € G. Then z € 4U“. Thus z € Kp and ¢p(z) € U(A).
Thus, by Lemma[3.1] we get ¢p(z) € P.U(A), and therefore z € Ap & U(A).
We deduce from above that < .,. > induces a non-degenerate and A-equivariant bilinear map:

U(4)
G Ap.
PU@A) T TR
O
3.2. Class groups. — Let wp : A ~ (A/PA)* be the cyclotomic character, i.e. Va €

A\ PA, wp(o,) = a (mod P). Let W = Zp[pga_4], and fix p : A/PA — W/pW a Fy-
isomorphism. We still denote by wp the morphism of groups A ~ y,a_; which sends o, to
the unique root of unity congruent to p(wp(a)) modulo pW. Observe that A := Hom(A, W*)
is a cyclic group of order ¢% — 1 generated by wp. For x € A, we set:

® ¢, = Tl,l ZaeA X(5)5_1 e W[A],
o ] ={x",j =0} CA,
® el = Dyep v € ZplA]-
Let Pic(Rp) be the ideal class group of the Dedekind domain Rp.
Corollary 3.3. — The Zy|A]-module: ey, (Pic(Rp)®zZy) is a cyclic module. Furthermore,
it is non trivial if and only if B(¢® —2) =0 (mod P).
Proof. — Recall that H(A) = {0}. Note that the trace map induces a surjective morphism
of A-modules H(Rp) — H(A). Therefore:
H(Rp)® = {0}.
Now, note that, Vx € ﬁ, we have an isomorphism of W-modules:
ex(CI°(Kp) @z W) =~ e, (CI°(Kp) @7 W).
Thus by [3] we get that e, | (CI°(Kp) ®z Z,) is a cyclic Zy[A]-module. Furthermore, by [5],
this latter module is non-trivial if and only if B(¢? —2) = 0 (mod P). We conclude the proof
by noting that:
€lwp] (ClO(Kp) X7, Zp) ~ €lyp) (PiC(Rp) X7, Zp) .
O
P-1

Recall that L = Kp(vy) where v = ec (

op(X) — ép—1(1) is equal to P, and ec(Kpo) is A-divisible, we conclude that L/Kp is
unramified outside P and every place of Kp above oo is totally split in L/Kp. Furthermore,

by Lemma 2.6}
e if pp_1(1) =0 (mod P?), L/Kp is unramified,

logc(l)). Since v € Oy, the derivative of
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e if op_1(1) Z0 (mod P?), L/Kp is totally ramified at the unique prime of Rp above P
(see the proof of Lemma [2.6)).

Let H/Kp be the Hilbert class field of Rp, i.e. H/Kp is the maximal unramified abelian
extension of Kp such that every place in So(Kp) is totally split in H/Kp. Then the Artin
symbol induces a A-equivariant isomorphism:

Pic(Rp) ~ Gal(H/Kp).

Note that ey, |G = G, where G = Gal(L/Kp). Thus the Artin symbol induces a F,[A]-
morphism:

Pic(Rp)
: — Gal(LNH/Kp).
(0 €lwp] <pPiC(Rp) — La ( / P)
Therefore, by Corollary and Lemma we get the following result which explains the
congruence of Corollary

Theorem 3.4. — The morphism of Fp[A]-modules induced by the Artin map:

Pic(R
bt ep) (M) — Gal(LN H/Kp),

P-1
s an isomorphism, where L = Kp <ec ( logc(1)>) and H is the Hilbert class field of
Rp.
3.3. Prime decomposition of units. — A natural question arises: are there infinitely

many primes P such that ¢p_1(1) =0 (mod P?)?
We end this note by some remarks centered around this question.

Lemma 3.5. — Let N(d) be the number of primes P of degree d such that ¢p_1(1) # 0
(mod P?). Then:

1 - q
N(d) > =(qg—1)¢g* ' - /2,
(d) > (¢ —1)q i7-1"
Proof. — Let Ny(d) be the number of primes of degree d. Then:
1 q
Ny(d) > =q% — ———q¥2.
Let M (d) be the number of primes P of degree d such that ¢p_1(1) =0 (mod P?). Set:
-1,
Vd)=) “tecA4
i=0

Then deg;V (d) = ¢?~1, and if P is a prime of degree d, we have by Lemma: op-1(1)=0
(mod P?) if and only if V(d) =0 (mod P). Therefore:
d—1

M(d) < =q

SH N
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Remark 3.6. — We have:

V(2) =1+T—TY.
Thus V(2) is (up to sign) the product of ¢/p primes of degree p. Therefore there exist primes
P of degree 2 such that ¢p_1(1) =0 (mod P?) if and only if p = 2, and in this case there are
exactly ¢/2 such primes.

Set H(X) = Ef:_ol X" € Fy[X]. Let S be the set of roots of H(X) in Cs. Note that
| S |=p—1. Let us suppose that S C F,. Let P be a prime of A such that P divides T9—T —«

for some a € Fy. Observe that such a prime is of degree p. Now, for k =0,---,p—1, we have:
1
Ly = E(—oz)k (mod P).

Therefore:

= -1

Vip) = p=l = _oP'H(—) (mod P).

= L @

Thus there exist at least (p— 1)% primes P in A of degree p such that ¢p_1(1) =0 (mod P?).

Lemma 3.7. — Let P be a prime of degree A and let n > 1. We have an isomorphism of

A-modules:
o A N A
pPrA ) Prl(P-1)A

Proof. — We first treat the case n = 1. By Lemma we have: ¢p(X) = x4 (mod P).
Therefore (P — 1)C(A/PA) = {0}. Now let @ € A such that Q.C(A/PA) = {0}. Then the
polynomial ¢g(X) (mod P) € (A/PA)[X] has ¢? roots in A/PA. Thus deg,Q > d.This
implies that C'(A/PA) is a cyclic A-module isomorphic to A/(P —1)A.

Now let us assume that n > 2. By Lemma [2.3] we have:

Va € PA, vp(¢p(a)) =1+vp(a).

This implies that C(PA/P™A) is a cyclic A-module isomorphic to A/P" 'A and P is a
generator of this module. The lemma follows from the fact that we have an exact sequence

of A-modules: " ) )
P
0—>(J<PnA> —>C’<PnA) —>(J<PA> — 0.

We deduce from the above lemma:

Corollary 3.8. — Let P be a prime of A. Then ¢p_1(1) =0 (mod P?) if and only if there
exists a € A\ PA such that ¢4(1) =0 (mod P?).

This latter corollary leads us to the following problem:

Question 3.9. — Let b € A.. Is it true that there exists a prime Q of A, Q =1 (mod b),
such that ¢g(1) is not squarefree?

A positive answer to that question has the following consequence:
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Lemma 3.10. — Assume that for every b € AL, we have a positive answer to question 1.
Then, there exist infinitely many primes P such that ¢p_1 =0 (mod P?).

Proof. — Let S be the set of primes P such that ¢p_1(1) =0 (mod P?). Let us assume that
S is finite. Write S = {Py,--- ,Ps}. Set b=1+[[[_;(Pi—1) (if S=0,b=1). Let Q be a
prime of A such that ¢g(1) is not squarefree and @ =1 (mod b). Then there exists a prime
P of A such that:
$po(1) =0 (mod P?).

Since ¢p(1) = 1 (mod P), we have P # @ and therefore Q € A\ PA. Furthermore, for
i =1,---,8 @ is prime to P; — 1. Therefore, by Lemma ¢o(1) # 0 (mod P?). Thus
P ¢ S which is a contradiction by Corollary |3.8 O
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